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Aims & Motivation

• approximation of ruled surfaces by discrete
models

• define subdivision schemes for sets of lines
• circumvent parameterizations
• handle lines (not line segments), eliminate

arbitrarily chosen directrices
• discrete models are more common in

CAGD/CAD and computer graphics and have
lots of applications
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What are we going to do?

• given a coarse model of a ruled surface (finite
set of lines)

• looking for a finer model (insert new lines)
• should lead to a pleasing (smooth) limit
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Ruled surfaces

l

r
• smooth / discrete

1-param. family of
lines (curve)

• directrix l, unit VF r
parallel to rulings

• central curve c:

c = l − 〈l̇, ṙ〉/〈ṙ, ṙ〉r

• locus of maximum
Gaussian curvature
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Klein model of line space

• lines l + v · r → (r, l × r) = (g, g)

• Plücker coordinates (g, g) ∈ R
3+3 satisfy

M 4 : 〈g, g〉 = 1, 〈g, g〉 = 0

• ruled surfaces are curves in M 4
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Subdivision schemes for curves

• interpolating scheme by DLG

• approximating scheme: Chaikin’s corner
cutting

• known limits and precision (different mascs,
ternary schemes, . . . )
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Subdivision schemes for curves

• originally for data in affine space
• generalized to data from arbitrary manifolds:

geodesic subdivision, subdivison + projection
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Algorithm 1: subdivision + projection

• discrete ruled surface = polygon in M 4

(vertices only)
• apply subdivision scheme to data

• project new vertices into M 4
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Algorithm 1: examples

• reproducing Plücker’s conoid

• algorithm handles torsal ruled surfaces
properly
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Algorithm 2: central curve + spherical image

• compute a discrete central curve
• refine a discrete version of the central curve
• refine discrete spherical image of the rulings
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Algorithm 2: examples

• approximating six arbitrarily given lines

• surface of Möbius type
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Algorithm 3: motion of the Sannia frame

e1

e3

e2

• Sannia frames
define discrete 1-pm.
motion

• refine Sannia motion
by means of geode-
sic subdivision

• geodesics = helical
motions

• computing interme-
diate positions
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Algorithm 3: examples

• approximating four arbitrarily given lines

• data from a helical surface
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Thank you for your attention!
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