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Aims & Motivation

approximation of ruled surfaces by discrete
models

define subdivision schemes for sets of lines
circumvent parameterizations

handle lines (not line segments), eliminate
arbitrarily chosen directrices

discrete models are more common in
CAGD/CAD and computer graphics and have
lots of applications



What are we going to do?

given a coarse model of a ruled surface (finite
set of lines)

looking for a finer model (insert new lines)

should lead to a pleasing (smooth) limit
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Ruled surfaces

central curve c:

c=1—({,7)/{F r)r

locus of maximum
Gaussian curvature

smooth / discrete
1-param. family of
MES

directrix /, unit VF
parallel to rulings




Klein model of line space

inesl+v-r— (r,l xr)=1(9,9)
Plucker coordinates (g,g) € R*" satisfy

M*: (g,9) =1, (9,9)=0

ruled surfaces are curves in M*
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Subdivision schemes for curves

interpolating scheme by DLG
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approximating scheme: Chaikin’s corner

cutting
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known limits and precision (different mascs,
ternary schemes, ...)
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Subdivision schemes for curves

originally for data in affine space

generalized to data from arbitrary manifolds:
geodesic subdivision, subdivison + projection




Algorithm 1: subdivision + projection

discrete ruled surface = polygon in M*
(vertices only)

apply subdivision scheme to data
project new vertices into M*
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Algorithm 1: examples
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algorithm handles torsal ruled surfaces
properly
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Algorithm 2: central curve + spherical image

compute a discrete central curve
refine a discrete version of the central curve

refine discrete spherical image of the rulings
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Algorithm 2: examples

approximating six arbitrarily given lines




Algorithm 3: motion of the Sannia frame

Sannia frames
define discrete 1-pm.
motion

reflne Sannia motion
by means of geode-
sic subdivision

geodesics = helical
motions

computing interme-
diate positions
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Algorithm 3: examples
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Thank you for your attention!
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