Convergent Triangle Tunnels

Boris Odehnal

University of Applied Arts Vienna

semi-orthogonal paths

A semi-orthogonal path $P_{0} P_{1} P_{2} P_{3}$
in a triangle $\Delta_{0}=A_{0} B_{0} C_{0}$:
$P_{0} \in\left[A_{0}, B_{0}\right]$,
$\left[P_{0}, P_{1}\right] \perp\left[A_{0}, B_{0}\right]$,

$$
P_{1} \in\left[B_{0}, C_{0}\right]
$$

and cyclic reordering with:
$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 0, A \rightarrow B \rightarrow C \rightarrow A$
The path is closed if $P_{0}=P_{3}$.

If $P_{0}=P_{3}$, then let $P_{0}=A_{1}, P_{1}=B_{1}, P_{2}=C_{1}$.
$\Delta_{0}=A_{0} B_{0} C_{0}$ is similar to $\Delta_{1}=A_{1} B_{1} C_{1}$.
$\Varangle C_{1} A_{1} B_{1}=\pi-\left(\frac{\pi}{2}-\alpha\right)-\frac{\pi}{2}=\alpha$, and cyclic....
construction: central similarity $\Delta_{0} \sim \Delta_{1}$
\Longrightarrow There exists a further triangle

$$
\nabla^{1} \sim \Delta_{0} \sim \Delta_{1}
$$

whose edges form a semi-orthogonal path.

... produces a sequence of nested and similar triangles $\Delta_{0}, \Delta_{1}, \Delta_{2}, \ldots$

The limit position $\mathcal{L}=\lim _{i \rightarrow \infty} A_{i}$ equals
$\left[A_{i}, A_{i+1}\right] \|_{a}\left[A_{i+2}, A_{i+3}\right]$

The orbit of $A_{0} A_{1} A_{2} \ldots$ of A_{0} is a discrete logarithmic spiral.

the asymptotic point of the spiral.

$$
\overline{A_{i} A_{i+1}}=\lambda \cdot \overline{A_{i+1} A_{i+2}}, i=0,1, \ldots
$$

\Longrightarrow The position of \mathcal{L} is obtained by computing the sums of infinite geometric series, since $\lambda<1$.

Elementary computations yield: $\lambda=4 F \sigma^{-1}$ with $\sigma=a^{2}+b^{2}+c^{2}, F \ldots$ area of Δ_{0} $(\Longrightarrow \lambda<1)$ and $\overline{A_{0} A_{1}}=2 b^{2} c \sigma^{-1}$.
coordinates of \mathcal{L} (w.r.t. the Cartesian frame $\left.A_{0}=(0,0), B_{0}=(c, 0)\right)$:
$x_{\mathcal{L}}=\overline{A_{0} A_{1}}-\overline{A_{2} A_{3}}+\overline{A_{4} A_{5}}-\overline{A_{6} A_{7}} \pm \ldots=\overline{A_{0} A_{1}} \quad \cdot\left(1-\lambda^{2}+\lambda^{4} \mp \ldots\right)$,
$y_{\mathcal{L}}=\overline{A_{1} A_{2}}-\overline{A_{3} A_{4}}+\overline{A_{5} A_{6}}-\overline{A_{7} A_{8}} \pm \ldots=\overline{A_{0} A_{1}} \cdot \lambda \cdot\left(1-\lambda^{2}+\lambda^{4} \mp \ldots\right)$.
$\lambda<1 \Longrightarrow 1-\lambda^{2}+\lambda^{4} \mp \ldots=\frac{1}{1+\lambda^{2}}$

$$
\Longrightarrow \mathcal{L}=\frac{b^{2} c}{2 \tau}(\sigma, 4 F)
$$

with $\tau=a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}$
$y_{\mathcal{L}}=\overline{\mathcal{L}\left[A_{0}, B_{0}\right]} \Longrightarrow$
homogeneous trilinear coordinates w.r.t. $\Delta_{0} \quad \mathcal{L}=\left(a c^{2}: b a^{2}: c b^{2}\right)$
$\Longrightarrow \mathcal{L}$ is the first Brocard point Δ_{0}.

the second semi-orthogonal path and \mathcal{L}^{\prime}

$\left[L_{1}, K_{1}\right] \perp\left[A_{0}, B_{0}\right],\left[K_{1}, M_{1}\right] \perp\left[C_{0}, A_{0}\right], \ldots$
$\nabla_{1}=K_{1} L_{1} M_{1} \sim \Delta_{0} \Longrightarrow \nabla_{1} \sim \Delta_{1}$
$\Delta_{1} \& \nabla_{1}$ share the circumcircle I - centered at X_{6}.

$$
\Longrightarrow \Delta^{1} \cong \nabla^{1}
$$

Second family $\Delta_{0} \nabla_{1} \nabla_{2} \ldots$ of triangles also converges to a point.

$$
\begin{aligned}
\lim _{i \rightarrow \infty} \nabla^{i} & =\mathcal{L}^{\prime}=\left(a b^{2}: b c^{2}: a^{2} c\right) \\
& \Longrightarrow \mathcal{L}^{\prime} \text { is the second Brocard point of } \Delta_{0}
\end{aligned}
$$

a simple construction of the limits \mathcal{L} and \mathcal{L}^{\prime}

The Thaloids of the three segments $A_{0} A_{1}$, $B_{0} B_{1}$, and $B_{0} B_{1}\left(A_{0} K_{1}, B_{0} L_{1}, C_{0} M_{1}\right)$ are concurrent in $\mathcal{L}\left(\mathcal{L}^{\prime}\right)$.

Each segment of the discrete logarithmic spiral corresponds to a 90° turn.
\Longrightarrow Each segment (and so $A_{0} A_{1}, \ldots$) is seen at a right angle from the asymptotic point (\mathcal{L} or $\left.\mathcal{L}^{\prime}\right)$.

The proof can also be done by computation.

This is a new and elementary construction of the two Brocard points of a triangle.

Tucker-Brocard cubic - K012

Tucker-Brocard cubic \mathcal{T} : locus of points X such that their Cevian triangles have the same area as the Cevian triangle of the symmedian point X_{6} (Lemoine point, Grebe point)
$\mathcal{T}=$ self-isotomic pivotal cubic, pivot $=X_{6}$ and contains further:
$X_{76} \ldots 3^{\text {rd }}$ Brocard point, $\alpha_{3}^{[\text {tril] }}=a^{-3}$
X_{880}, X_{882}
and (more or less) surprisingly
the tunnel limits \mathcal{L} and \mathcal{L}^{\prime}
(1. \& 2. Brocard point)

non-Euclidean versions

interesting only in non-degenerate CK-geometries $\left(\mathbb{E}^{2} \& \mathbb{H}^{2}\right)$:
projective mapping π : $P_{0} \mapsto P_{3}$ without self-assigned point
\Longrightarrow two different fixed points
\mathbb{H}^{2} : Only one solution is proper.
Absolute polar triangle of the non-proper solution lies conconical with the proper one.
$\mathbb{H}^{2} \& \mathbb{E}^{2}:$
One solution for one orientation of the path finds a companion from the other orientation such that the two triangles lie on one conic.

In a generic n-lateral in the Euclidean plane there exist up to ($n-1$)! different closed semi-orthogonal paths.
generic n-lateral ...n different straight lines in the (Euclidean) plane, no right angle enclosed
closed semi-orthogonal path ... projective mapping $\pi: l_{i} \rightarrow l_{i}$ with self-assigned ideal point
\Longrightarrow one proper fixed point for any ordering of the lines I_{i}

The sequence $Q_{0}, Q_{1}, Q_{2}, \ldots$ of quadrilaterals does in general not contain similar quadrilaterals.

Measures of interior angles of Q_{0} can be found in any $Q_{i}(i>0)$.

Convexity is not necessary.
The sequences of vertices converge.
The orbits differ from logarithmic spirals.

in three-space

given: a tetrahedron $\mathcal{T}=A B C D$ start at $P_{0} \in[A, B, C]$ and find $P_{1} \in[B, C, D]$ with $\left[P_{0}, P_{1}\right] \perp[A, B, C]$, $P_{2} \in[C, D, A]$ with $\left[P_{1}, P_{2}\right] \perp[B, C, D]$, $P_{3} \in[D, A, B]$ with $\left[P_{2}, P_{3}\right] \perp[C, D, A]$, $P_{4} \in[A, B, C]$ with $\left[P_{3}, P_{4}\right] \perp[D, A, B]$.
$\pi: P_{0} \mapsto P_{4}$ is a projective mapping, finite sequence of perspectivities with four coplanar perspectors in the ideal plane only one real fixed point $P_{0}=P_{4}$ which is the intersection of a pair conjugate complex lines in $[A, B, C]$
in fact: six different paths

related work

[1] B. Gibert: Tucker-Brocard cubic. Available at:
http://bernard.gibert.pagesperso-orange.fr/Exemples/k012.html
[2] M. Hajja: On nested sequences of triangles. Result. Math. 54 (3), 289-299.
[3] C. Kimberling: Triangle Centers and Central Triangles. (Congressus Numerantium Vol. 129) Utilitas Mathematica Publishing, Winnipeg, 1998.
[4] C. Kimberling: Encyclopedia of Triangle Centers. Available at:
http://faculty.evansville.edu/ck6/encyclopedia
[5] C. Kimberling: Bicentric Pairs of Points and Related Triangle Centers.
Forum Geometricorum 3 (2003), 35-47.
[6] E.L. Wachspress: A rational basis for function approximation.
Lecture Notes in Mathematics. Vol. 228, Springer, New York, 1971.

Thank You For Your Attention!

