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semi-orthogonal paths
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A semi-orthogonal path P0P1P2P3
in a triangle ∆0 = A0B0C0:

P0 ∈ [A0, B0],

[P0, P1]⊥[A0, B0],

P1 ∈ [B0, C0]

and cyclic reordering with:

0→ 1→ 2→ 3→ 0, A→ B → C → A

The path is closed if P0 = P3.
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projective point of view
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π : [A0, B0] → [A0, B0], P0 7→ P3
is a projectivity in which the ideal

point R of [A0, B0] is self-assigned.

=⇒ ∃⋆P0∈ [A0, B0] with P0 = P3
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important property: similarity
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If P0 = P3, then let P0 = A1, P1 = B1, P2 = C1.

∆0 = A0B0C0 is similar to ∆1 = A1B1C1.

<) C1A1B1 = π − (
π
2 − α)−

π
2 = α,

and cyclic . . . .

construction: central similarity ∆0 ∼ ∆1

=⇒ There exists a further triangle

∇1 ∼ ∆0 ∼ ∆1
whose edges form a semi-orthogonal path.
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iteration . . .

. . . produces a sequence of nested and

similar triangles ∆0, ∆1, ∆2, . . . .

The orbit of A0A1A2 . . . of A0 is a

discrete logarithmic spiral.
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The limit position L = lim
i→∞

Ai equals

[Ai , Ai+1] ‖a [Ai+2, Ai+3]

the asymptotic point of the spiral.

AiAi+1 = λ · Ai+1Ai+2, i = 0, 1, . . .

=⇒ The position of L is obtained by computing the sums of infinite geometric series,
since λ < 1.
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L

Elementary computations yield: λ = 4Fσ−1 with σ = a2+ b2+ c2, F . . . area of ∆0
(=⇒ λ < 1) and A0A1 = 2b

2cσ−1.

coordinates of L (w.r.t. the Cartesian frame A0 = (0, 0), B0 = (c, 0)):

xL=A0A1−A2A3+A4A5−A6A7±. . . = A0A1 · (1− λ2 + λ4 ∓ . . .),

yL=A1A2−A3A4+A5A6−A7A8±. . . = A0A1 · λ· (1− λ
2 + λ4 ∓ . . .).

λ < 1 =⇒ 1− λ2 + λ4 ∓ . . . = 1
1+λ2

=⇒ L = b
2c
2τ (σ, 4F )

with τ = a2b2 + b2c2 + c2a2

yL = L [A0, B0] =⇒

homogeneous trilinear coordinates w.r.t. ∆0 L = (ac2 : ba2 : cb2)

=⇒ L is the first Brocard point ∆0.
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the second semi-orthogonal path and L′
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[L1, K1]⊥[A0, B0], [K1,M1]⊥[C0, A0], . . .

∇1 = K1L1M1 ∼ ∆0 =⇒ ∇1 ∼ ∆1

∆1 & ∇1 share the circumcircle l - centered at X6.

=⇒ ∆1 ∼= ∇1

L

L′

Second family ∆0∇1∇2 . . . of triangles also conver-

ges to a point.

lim
i→∞

∇i = L′ = (ab2 : bc2 : a2c)

=⇒ L′ is the second Brocard point of ∆0.
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a simple construction of the limits L and L′
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The Thaloids of the three segments A0A1,

B0B1, and B0B1 (A0K1, B0L1, C0M1) are

concurrent in L (L′).

Each segment of the discrete logarithmic spiral

corresponds to a 90◦ turn.

=⇒ Each segment (and so A0A1, . . . ) is seen

at a right angle from the asymptotic point (L

or L′).

The proof can also be done by computation.

This is a new and elementary construction of the two Brocard points of a triangle.
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Tucker-Brocard cubic - K012
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Tucker-Brocard cubic T :

locus of points X such that their Cevian

triangles have the same area as the Cevian

triangle of the symmedian point X6
(Lemoine point, Grebe point)

T = self-isotomic pivotal cubic, pivot = X6

and contains further:

X76 . . . 3rd Brocard point, α
[tril]
3 = a−3

X880, X882
and (more or less) surprisingly

the tunnel limits L and L′

(1. & 2. Brocard point)
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non-Euclidean versions

interesting only in non-degenerate

CK-geometries (E2 & H2):

projective mapping π : P0 7→ P3
without self-assigned point

=⇒ two different fixed points

H
2: Only one solution is proper.

Absolute polar triangle of the non-proper solution lies con-

conical with the proper one.

H
2 & E2:

One solution for one orientation of the path finds a compa-

nion from the other orientation such that the two triangles

lie on one conic.
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n-gons
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In a generic n-lateral in the Euclidean plane there

exist up to (n−1)! different closed semi-orthogonal

paths.

generic n-lateral . . . n different straight lines in the

(Euclidean) plane, no right angle enclosed

closed semi-orthogonal path . . . projective mapping

π : li → li with self-assigned ideal point

=⇒ one proper fixed point for any ordering of the

lines li
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n-gons, quadrilaterals

The sequence Q0, Q1, Q2, . . . of qua-

drilaterals does in general not contain

similar quadrilaterals.

Measures of interior angles of Q0 can

be found in any Qi (i > 0).

Convexity is not necessary.

The sequences of vertices converge.

The orbits differ from logarithmic spi-

rals.
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in three-space

given: a tetrahedron T = ABCD

start at P0 ∈ [A,B,C] and find

P1 ∈ [B,C,D] with [P0, P1]⊥[A,B, C],

P2 ∈ [C,D,A] with [P1, P2]⊥[B,C,D],

P3 ∈ [D,A,B] with [P2, P3]⊥[C,D,A],

P4 ∈ [A,B, C] with [P3, P4]⊥[D,A,B].

π : P0 7→ P4 is a projective mapping, finite

sequence of perspectivities with

four coplanar perspectors in the ideal plane

only one real fixed point P0 = P4
which is the intersection of a pair conjugate

complex lines in [A,B, C]

in fact: six different paths
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Thank You For Your Attention!
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