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What is a porism?

e something in between a theorem and a problem (Euklid)
e Indetermined or unsolvable problem
e geometric locus

e theorems from projective geometry
The meaning of the word has changed (more than once)!

Nowadays: A porism Is a closure theorem, or closure property,
or a geometric figure/construction that closes somehow.
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some examples from triangle geometry
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algebraic correspondences, multiple binary forms



examples

(U, u) circumcenter, circumcircle
(1, 1) incenter, incircle
of a triangle A = (Fy, P, P>) (white)

u and / are circum- an incircle of a smooth
one-parameter family of triangles.

Porism: If the polygon (FPy, P1, P) (s.t. P, € u and [Py, Pxi1] € I, k mod 3)
s closed for one choice of Fy € u, then it is closed for any choice of Ay € u.
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examples

The poristic motion of (Fy, P, P>) is not
a rigid body motion.

The motion of any single side (line)
|Pi, Pi11] can be realized by such a (+—)
mechanism with four moving systems: one
rotating about /, two gliding along u, one
([P, P1] +—) rotating about P, and glid-
Ing through F;.

Any side of A attains the position of [Fy, P;] once while A traces the poristic family.
—
The poristic path of any point associated with A Is traced at least three times.
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examples

Coe2

During the “poristic motion” of (Fy, P, ) these (1) triangle centers move on
circles.



examples

Whereas these (1) triangle centers move on ellipses.

€1495



examples

The poristic trace of the Exeter point X»5 can be an ellipse, or parabola, or hyperbola.



examples

Circles u and i are circum-/incircle of one (and than ocol) triangle(s), if and only if
R? —2Rr = d°

holds, where d = U/, r and R are in-/circumradius ( ).

Usually: A family of triangles with a common circumcircle and incircle i1s called a
poristic family.

There are many other porisms related to triangles.
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examples

A = (Fy, P, P>) ...base triangle, Ae = (A1, A, A3) ...excentral triangle of A,
Ao(Ae) = A ... orthic triangle of Ag

The excenters of triangles from a poristic
family trace a circle e.

u = ninepoint circle of Ae —
poristic family with common circumcircle e

and ninepoint circle u

— poristic family with common circum-
circle e and common incircle 1 of the orthic
triangle
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examples

A= (P, P;, P>) ...base triangle, At = (Tg, T1, To) .. .tangent triangle of A,

Aj(A¢) = A .. .intouch triangle of A

Vertices T; of A of triangles of a poristic
family trace an ellipse t.

—> poristic family of triangles A+ with a
fixed circumellipse t and common incircle

—> poristic family of triangles A+ with a
fixed circumellipse t and common incircle
I of the intouch triangle A;
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examples

n-gons with incircle / and circumcircle u are called bicentric (not necessarily regular,
convex). For even n the diagonals (joining opposite vertices) are concurrent.

star shaped convex n even n even
regular regular — regular — regular
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examples

The relations between R, r, and d are algebraic (indeed polynomial) for any n:
n relation

3 d* = R? —2Rr E (S, R, K, A-C)
4 (R? — d?)2 = 2r2(R? + d?) C, J K, ...

5 | r(Red)=(R+d) <\/(R—r)2—d2+\/2R(R—r—d)> S, K

6 | 3(R2—d)*=4r2(R?+d?)(R%—d?)2+16r*d?R? | S, R, K

7 J, K

8 J, ST R

9 also 10, 12, 14 R

A-C=Altshiller-Court (1952), C=Casey (1888), E=Euler (?), J=Jacobi (1823),
K=Kerawala (1947), R=Richelot (1830)2°/, S=Steiner (1827)
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examples

Steiner chains are sequences (¢) = (¢p, 1, . .., ¢p) of circles touching two circles a,
b s.t. ¢jis also in contact with ¢;_1 and ¢4 1.

d

If cog = cp for some n € N\ {0, 1,2}, then (¢) is called a poristic chain.
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examples

Steiner porism: If the chain (¢) is closed for one initial circle ¢y, then it is closed
for any choice of admissable initial circle.

The ring-shaped chain can be “rotated” in between a and b.
rotation = equiform rotation

What about the needle-shaped chain?

There Is exactly one circle of radius 0 and the equiform transformation becomes
singular.
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examples

Apply an inversion and map a and b to
concentric circles with r5 > rp. The chain
(c) is closed, if

ra—rb . T
= sIn —.
Fa+ rp n

Rational porisms exist [P. Yiu, FG 11/27].

Centers of circles lie on an ellipse If a and
b are not concentric.

The last three figures can be interpreted as cross sections of Dupin cyclides.



examples

The envelopes of spheres from Steiner chains are Dupin cyclides.

hiles
5%‘ : NEEEY,
| T

e

The chain of spheres can be rotated freely in the cyclide (equiform motion). According
to P. Yiu there exist rational sphere porisms. n = 6 = Soddy hexlet
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example

The altitudes of any non-orthocentric tetrahedron 7 = (A, B, C, D) lie in a ruled
quadric Q centered in T's Monge point.

If Q@ I1s a quadric of revolution,
then there are infinitely many such
tetrahedra.

The rotation of 7 Is a rigid body
motion.

Porism: If there is one such tetra-
hedron 7 with altitudes in Q,
then there are infinitely many
congruent copies of T with the
same properties.
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Poncelet

So far most of the examples deal with porisms in circles. Poncelet’s porism is a more
general and specific version ( ) and contains many of the
examples:

Assumption:

Given two conic sections ¢y, ¢ (in general position).

Theorem:

If there exists an n-gon (Fy, Py, ...Py—1) st. P € g and t; == [P}, Pi11] € &,
then there exist infinitely many such polygons.

c; is the set of tangents of c.

20



Poncelet - the proof

Proof - sketch of a proof.
Assumption: c1, ¢ in general position (in
GP), e, #(c1No) =4 (
).
—> ¢7 and ¢ in GP (

)

Poncelet correspondence P := {(P,t): P € c;,t € c5, P € t}
two mappings on P: o(Fy, tg) := (Py, tg) and 7(Py, tg) == (P, t1)
Both are involutive: 02 = idp, 72 = idp.

The Poncelet map n := 7 o o acts biective on P.
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Poncelet - the proof

P is a two-sheeted cover of ¢ with branch points (P, t), where P € ¢c; N ¢
P is a two-sheeted cover of ¢5 with branch points (P, t), where t € ¢ N ¢
o and 7 interchange sheets and leave branches fixed.

The sets of branch points . ..

Be, ={(Pt)eP:PccnNacy}, Bcz* ={(Pt)eP:teccnNc}
...unite to

F={(Pt):Pccnao,tccnNdc}

with

F=0<+=c1,00in GP < ¢, c5 in GP

Important fact: ¢j, ¢ = C=CUoo = ¢j, ¢/ = PL(C)
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Poncelet - the proof

We derive an algebraic equation for P.

o : C — P?(C) . .. affine conic section with cg(v) = (1, u, u?), u e C
define cg(o0) ;== (0:0:1) = ¢ : C — P2(C)

We start with parametrizations of ¢; and c5 over C:

1

P(u) = Cq-cnlu — P
(u) 1+ co(u) N . one-to-one & onto,
: 2

() = Gy “VEC
where Cq, C5 € GL(C, 3).

P(u) is parametrization of the points on ¢y, t(Vv) is a parametrization of the tangents
of G ( )

C —
C —
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Poncelet - the proof

A pair (P, t)is a “point” of P <= P €t <= (P, t) = 0. This gives the equation
of P in the (u, v)-plane c*:

M(u, v) = (v)' -C3"-Cq - co(u) = 0.

M(u, v) = 0 is the equation of an algebraic curve v C C? with degy < 4.
v is elliptic and of genus 1 and as a Riemann surface isomorphic to a torus.

Elliptic curves can be endowed with a unique analytic group structure. They can be
parametrized with the WeierstraB-function. There exists an isomorphism ¢ : C/A —
v(P) for some lattice A.
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Poncelet - the proof

Geometric realization of the group structure on elliptic curves:
e

These two cases look different but only from the real point of view.
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Poncelet - the proof

The mapping m(P(u), t(v)) : Cc° - €] X G5 Is one-to-one and onto, also its
restriction m|y : v — P.

m(Q, u) € F <= (Q, u) is a singular point of v
For ¢1, ¢» in GP = F = () = 7y is smooth in c°
— If ¢1, ¢ In GP, then v I1s smooth In C? with complex structure inherited by m.

v is an elliptic curve: verification rather technical, solving M = 0 w.r.t. u (or v)
involves a cubic discriminant with no multiple roots (since ¢y, ¢ in GP).

20



Poncelet - the proof

The mappings o, 7, and 7 = 7 o ¢ Induce automorphisms of P:

oc*=m Yoo om ... involution on v, Interchanges points with same v-coordinate

7 =m~Lo710om ... involution on v, Interchanges points with same u-coordinate

v is a two-sheeted branched cover of the u-/v-spheres = o™ /7" interchange the
v-/ u-sheets. =

o”, 7 ...automorphisms of v and m lifts them to automorphisms of P. <—-

1 1 1 1

* oToocom=m ~omom

i :T*oo'*:m_ oTomom ~oocom=m

Is an automorphism of P.
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Poncelet - the proof

Finally we show that n* : P — P is a translation on this elliptic curve:

$: C/N— P ...isomorphism with proper A = ¢ carries the additive action on
C/A to that on P.

G =¢p Locop T:=¢d LloTog...conformalinvolutions with four fixed points
(fundamental parallelogram of A) =

~

m := T o0 is a translation of C/A, i.e., n(z) = z+ a for all z and some a in C/A.

For z € P and b = ¢(a) the isomorphism ¢ yields
n(y)=donod ty)=d(@ (z)+a)=¢odp 1(z) +¢(a) =z +b.

— If n''(pg) = pg for one py € P and some n € N\ {0, 1}, then we have
n"(p) =p+ nb. Let now p =pg = nb=0=— n"(p) =p for all p € P.
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Poncelet - remarks

The proof for ¢y, ¢ not iIn GP I1s similar, but needs separate discussion of the four

further configurations of ¢y, ¢:

OO

For ellipses and circles there are many results obtained in an elementary way.
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Cayley’s theorem

¢i: x'-C;-x=0...two conic sections, C; € GL(C, 3)

There exists an n-sided polygon inscribed In ¢y and circumscribed to ¢, If and only
If, the coefficients a; in the power series

Jdet(t - Cp+Co) = ap + art + ant? + . ..

fulfil
a2 dm+1
: = 0,f n=2m+1m>1
dm+1 dom
ds C dm+1
: : =0, fn=2m m>2.
dm+1 ... d2m+1

The proof use the same techniques!
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multiple binary forms - example

The equation M(u, v) = 0 of the elliptic curve 7y is a special case of a multiple binary
form:

f f 0.

00 --- Tok K1
_ Y5 Y
f(XO:Xl;YO:Yl):(X(/)(,Xg D Xf)' : : ' OE '

feo - T e

1

let X =1, X1 =Xx; Yp =1, Y1 = y = Inhomogeneous equation

The relation to incidence conditions of points on normal curves of order kK and normal
varieties of order K is obvious.

To any pair (xp, yg) there exist kK — 1 further yq, v», ... (# yp) and k — 1 further xq,
XD, ... (# Xo).
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multiple binary forms - example

If now xg = xp and yg = y, for positive integers n and v, then f shows a closure
and there is a geometric realization in form of a configuration

k .
A s (X0, X1 Xn—1: Y0, Y1, -+ -0 Yu—1)

with nk = kv pairs of elements.
If £ defines infinitely many such configurations, then f shows a porism.

For conditions on multiple binary forms to be poristic, see: A.B. Coble: Multiple binary
forms with closure property. American J. 43 (1921), 1-109.
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multiple binary forms - the closing example

A special form f describes the configura-
tion A:

If a ¢4 passes through the 16 points
of checker board grid (projective version)
formed by 2 - 4 tangents of a ¢, then
there are infintely many such diagrams with

points on ¢4 and lines tangent to .
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Thank You For Your Attention!
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