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What is a porism?

• something in between a theorem and a problem (Euklid)

• indetermined or unsolvable problem

• geometric locus

• theorems from projective geometry

The meaning of the word has changed (more than once)!

Nowadays: A porism is a closure theorem, or closure property,

or a geometric figure/construction that closes somehow.
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Today’s menu

Apéritif some examples from triangle geometry

Starter porisms of/with circles and spheres

Soup Poncelet porisms and others

Main course how to prove Poncelet’s theorem

Desert Cayley’s theorem

Digestif algebraic correspondences, multiple binary forms
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examples

U I

u

i

P0

P1

P2

(U, u) circumcenter, circumcircle

(I, i) incenter, incircle

of a triangle ∆ = (P0, P1, P2) (white)

u and i are circum- an incircle of a smooth

one-parameter family of triangles.

Porism: If the polygon (P0, P1, P2) (s.t. Pk ∈ u and [Pk , Pk+1] ∈ i
⋆, k mod 3)

is closed for one choice of P0 ∈ u, then it is closed for any choice of P0 ∈ u.
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examples

U I

u

i

P0

P1

P2

The poristic motion of (P0, P1, P2) is not

a rigid body motion.

The motion of any single side (line)

[Pi , Pi+1] can be realized by such a (←−)

mechanism with four moving systems: one

rotating about I, two gliding along u, one

([P0, P1]←−) rotating about P0 and glid-

ing through P1.

Any side of ∆ attains the position of [P0, P1] once while ∆ traces the poristic family.

=⇒

The poristic path of any point associated with ∆ is traced at least three times.

5



examples

u

i
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2077
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2095

2098

2099

2446

2447

2646

3057

3245

3256

3295
3303

3304

3336

3337

3338

3339

3340

3361

3576

3579

3587

3601

3612

P0

P1

P2

Duringthe“poristicmotion”of(P0,P1,P2)these(↑)trianglecentersarefixed.

Moreprecise:Theyarethesameforalltrianglesintheporisticfamily.
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examples

P0

P1

P2

X1X3

u

i

c21

X21

c23

X23

c32

X32

c355

X355

c908

X908

c944

X944

c962

X962

c1511

X1511

During the “poristic motion” of (P0, P1, P2) these (↑) triangle centers move on

circles. The circles are traced three times.
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examples

P0

P1

P2

X1X3

u

i

e22

X22

X25

e52
X52

e185

X185

e378

X378

e1216

X1216

e1495

X1495

X1871

Whereas these (↑) triangle centers move on ellipses. The ellipses are traced three
times.
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examples

P0

P1

P2

X1

X3

u

iX22

e22

P0

P1

P2

X1X3

u

i

X22

e22

P0

P1

P2

X3

u

e22

The poristic trace of the Exeter point X22 can be an ellipse, or parabola, or hyperbola.

X22 is the perspector of the circummedial triangle and ∆t .
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examples

Circles u and i are circum-/incircle of one (and than ∞1) triangle(s), if and only if

R2 − 2Rr = d2

holds, where d = UI, r and R are in-/circumradius (one of many Euler formulas).

Usually: A family of triangles with a common circumcircle and incircle is called a

poristic family.

There are many other porisms related to triangles.
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examples

∆ = (P0, P1, P2) . . . base triangle, ∆e = (A1, A2, A3) . . . excentral triangle of ∆,
∆o(∆e) = ∆ . . . orthic triangle of ∆e

P0

P1

P2

A1

A2

A3

E I
U

e

i

u

The excenters of triangles from a poristic

family trace a circle e.

u = ninepoint circle of ∆e =⇒

poristic family with common circumcircle e

and ninepoint circle u

=⇒ poristic family with common circum-

circle e and common incircle i of the orthic

triangle
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examples

∆ = (P0, P1, P2) . . . base triangle, ∆t = (T0, T1, T2) . . . tangent triangle of ∆,

∆i(∆t) = ∆ . . . intouch triangle of ∆t

P0

P1

P2

IU

t

i

u

T0

T1

T2

Vertices Ti of ∆t of triangles of a poristic

family trace an ellipse t.

=⇒ poristic family of triangles ∆t with a

fixed circumellipse t and common incircle

u

=⇒ poristic family of triangles ∆t with a

fixed circumellipse t and common incircle

i of the intouch triangle ∆i
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examples

n-gons with incircle i and circumcircle u are called bicentric (not necessarily regular,

convex). For even n the diagonals (joining opposite vertices) are concurrent.

star shaped convex n even n even
regular regular ¬ regular ¬ regular
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examples

The relations between R, r , and d are algebraic (indeed polynomial) for any n:
n relation

3 d2 = R2 − 2Rr E (S, R, K, A-C)

4 (R2 − d2)2 = 2r2(R2 + d2) C, J, K, . . .

5 r (R−d)=(R+d)
(√
(R−r )2−d2+

√
2R(R−r−d)

)
S, K

6 3(R2−d2)4=4r2(R2+d2)(R2−d2)2+16r4d2R2 S?, R, K
7 . . . J, K

8 . . . J, S?, R
9 also 10, 12, 14 R

A-C=Altshiller-Court (1952), C=Casey (1888), E=Euler (?), J=Jacobi (1823),

K=Kerawala (1947), R=Richelot (1830)257, S=Steiner (1827)
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examples

Steiner chains are sequences (c) = (c0, c1, . . . , cn) of circles touching two circles a,

b s.t. ci is also in contact with ci−1 and ci+1.
a

b

a

b

If c0 = cn for some n ∈ N \ {0, 1, 2}, then (c) is called a poristic chain.
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examples

Steiner porism: If the chain (c) is closed for one initial circle c0, then it is closed

for any choice of admissable initial circle.

The ring-shaped chain can be “rotated” in between a and b.

rotation = equiform rotation

What about the needle-shaped chain?

There is exactly one circle of radius 0 and the equiform transformation becomes

singular.
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examples

Apply an inversion and map a and b to

concentric circles with ra > rb. The chain

(c) is closed, if

ra − rb
ra + rb

= sin
π

n
.

Rational porisms exist [P. Yiu, FG 11/27].

Centers of circles lie on an ellipse if a and

b are not concentric.

a

b

The last three figures can be interpreted as cross sections of Dupin cyclides.
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examples

The envelopes of spheres from Steiner chains are Dupin cyclides.

a

b

The chain of spheres can be rotated freely in the cyclide (equiform motion). According

to P. Yiu there exist rational sphere porisms. n = 6 =⇒ Soddy hexlet
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example

The altitudes of any non-orthocentric tetrahedron T = (A,B, C,D) lie in a ruled
quadric Q centered in T ’s Monge point.

A

B

C

D
If Q is a quadric of revolution,

then there are infinitely many such

tetrahedra.

The rotation of T is a rigid body

motion.

Porism: If there is one such tetra-

hedron T with altitudes in Q,

then there are infinitely many

congruent copies of T with the

same properties.
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Poncelet

So far most of the examples deal with porisms in circles. Poncelet’s porism is a more

general and specific version (no spheres, no tetrahedra) and contains many of the

examples:

Assumption:

Given two conic sections c1, c2 (in general position).

Theorem:

If there exists an n-gon (P0, P1, . . . Pn−1) s.t. Pi ∈ c1 and ti := [Pi , Pi+1] ∈ c
⋆
2 ,

then there exist infinitely many such polygons.

c⋆2 is the set of tangents of c2.
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Poncelet - the proof

P0

P1

t0

t1

c1

c2

σ σ

τ

τ
Proof - sketch of a proof.

Assumption: c1, c2 in general position (in

GP), i.e., #(c1∩c2) = 4 (not algebraical-

ly counted).

=⇒ c⋆1 and c
⋆
2 in GP (four common tan-

gents)

Poncelet correspondence P := {(P, t) : P ∈ c1, t ∈ c
⋆
2 , P ∈ t}

two mappings on P: σ(P0, t0) := (P1, t0) and τ(P1, t0) := (P1, t1)

Both are involutive: σ2 = idP , τ
2 = idP .

The Poncelet map η := τ ◦ σ acts bijective on P.
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Poncelet - the proof

P is a two-sheeted cover of c1 with branch points (P, t), where P ∈ c1 ∩ c2

P is a two-sheeted cover of c⋆2 with branch points (P, t), where t ∈ c
⋆
1 ∩ c

⋆
2

σ and τ interchange sheets and leave branches fixed.

The sets of branch points . . .

Bc1 := {(P, t) ∈ P : P ∈ c1 ∩ c2}, Bc⋆2
:= {(P, t) ∈ P : t ∈ c⋆1 ∩ c

⋆
2}

. . . unite to

F = {(P, t) : P ∈ c1 ∩ c2, t ∈ c
⋆
1 ∩ c

⋆
2}

with

F = ∅ ⇐⇒ c1, c2 in GP⇐⇒ c
⋆
1 , c
⋆
2 in GP

Important fact: ci , c
⋆
i
∼= C = C ∪∞ =⇒ ci , c

⋆
i
∼= P1(C)
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Poncelet - the proof

We derive an algebraic equation for P.

c0 : C→ P
2(C) . . . affine conic section with c0(u) = (1, u, u

2), u ∈ C

define c0(∞) := (0 : 0 : 1) =⇒ c0 : C→ P
2(C)

We start with parametrizations of c1 and c
⋆
2 over C:

P (u) = C1 · c0(u)

t(v) = C⋆2
T ·c0(v)

u, v ∈ C
P : C → c1
t : C → c⋆2

one-to-one & onto,

where C1, C
⋆
2 ∈ GL(C, 3).

P (u) is parametrization of the points on c1, t(v) is a parametrization of the tangents
of c2 (or the points of c

⋆
2).
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Poncelet - the proof

A pair (P, t) is a “point” of P ⇐⇒ P ∈ t ⇐⇒ 〈P, t〉 = 0. This gives the equation

of P in the (u, v)-plane C
2
:

M(u, v) = c0(v)
T ·C⋆2

T ·C1 · c0(u) = 0.

M(u, v) = 0 is the equation of an algebraic curve γ ⊂ C
2
with deg γ ≤ 4.

γ is elliptic and of genus 1 and as a Riemann surface isomorphic to a torus.

Elliptic curves can be endowed with a unique analytic group structure. They can be

parametrized with the Weierstraß-function. There exists an isomorphism φ : C/Λ→

γ(P) for some lattice Λ.
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Poncelet - the proof

Geometric realization of the group structure on elliptic curves:

a
b

a+b

a∗b

γ

e

a
b

a+b

a∗b

γ

γ

e

These two cases look different but only from the real point of view.
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Poncelet - the proof

The mapping m(P (u), t(v)) : C
2
→ c1 × c

⋆
2 is one-to-one and onto, also its

restriction m|γ : γ → P.

m(Q, u) ∈ F ⇐⇒ (Q, u) is a singular point of γ

For c1, c2 in GP =⇒ F = ∅ =⇒ γ is smooth in C
2
.

=⇒ If c1, c2 in GP, then γ is smooth in C
2
with complex structure inherited by m.

γ is an elliptic curve: verification rather technical, solving M = 0 w.r.t. u (or v)

involves a cubic discriminant with no multiple roots (since c1, c2 in GP).
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Poncelet - the proof

The mappings σ, τ , and η = τ ◦ σ induce automorphisms of P:

σ⋆ = m−1 ◦ σ ◦m . . . involution on γ, interchanges points with same v -coordinate

τ⋆ = m−1 ◦ τ ◦m . . . involution on γ, interchanges points with same u-coordinate

γ is a two-sheeted branched cover of the u-/v -spheres =⇒ σ⋆/τ⋆ interchange the

v -/u-sheets. =⇒

σ⋆, τ⋆ . . . automorphisms of γ and m lifts them to automorphisms of P. ⇐⇒

η⋆ = τ⋆ ◦ σ⋆ = m−1 ◦ τ ◦m ◦m−1 ◦ σ ◦m = m−1 ◦ τ ◦ σ ◦m = m−1 ◦ η ◦m

is an automorphism of P.
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Poncelet - the proof

Finally we show that η⋆ : P → P is a translation on this elliptic curve:

φ : C/Λ → P . . . isomorphism with proper Λ =⇒ φ carries the additive action on

C/Λ to that on P.

σ̃ := φ−1 ◦ σ ◦ φ, τ̃ := φ−1 ◦ τ ◦ φ . . . conformal involutions with four fixed points

(fundamental parallelogram of Λ) =⇒

η̃ := τ̃ ◦ σ̃ is a translation of C/Λ, i.e., η̃(z) = z + a for all z and some a in C/Λ.

For z ∈ P and b = φ(a) the isomorphism φ yields

η(y) = φ ◦ η̃ ◦ φ−1(y) = φ(φ−1(z) + a) = φ ◦ φ−1(z) + φ(a) = z + b.

=⇒ If ηn(p0) = p0 for one p0 ∈ P and some n ∈ N \ {0, 1}, then we have

ηn(p) = p + nb. Let now p = p0 =⇒ nb = 0 =⇒ η
n(p) = p for all p ∈ P.
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Poncelet - remarks

The proof for c1, c2 not in GP is similar, but needs separate discussion of the four

further configurations of c1, c2:

For ellipses and circles there are many results obtained in an elementary way.
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Cayley’s theorem

ci : x
T ·Ci · x = 0 . . . two conic sections, Ci ∈ GL(C, 3)

There exists an n-sided polygon inscribed in c1 and circumscribed to c2, if and only
if, the coefficients ai in the power series

√
det(t · C1 + C2) = a0 + a1t + a2t

2 + . . .

fulfil
∣∣∣∣∣∣

a2 . . . am+1
... ...
am+1 . . . a2m

∣∣∣∣∣∣
= 0, if n = 2m + 1m ≥ 1

∣∣∣∣∣∣

a3 . . . am+1
... ...
am+1 . . . a2m+1

∣∣∣∣∣∣
= 0, if n = 2m,m ≥ 2.

The proof use the same techniques!
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multiple binary forms - example

The equation M(u, v) = 0 of the elliptic curve γ is a special case of a multiple binary
form:

f (X0 : X1; Y0 : Y1) = (X
k
0 , X

k−1
0 X1, . . . , X

k
1 ) ·



f00 . . . f0κ
... ...
fk0 . . . fkκ


 ·




Y κ0
Y
κ1
0 Y1...
Y κ1




let X0 = 1, X1 = x ; Y0 = 1, Y1 = y =⇒ inhomogeneous equation

The relation to incidence conditions of points on normal curves of order k and normal
varieties of order κ is obvious.

To any pair (x0, y0) there exist κ− 1 further y1, y2, . . . (6= y0) and k − 1 further x1,
x2, . . . (6= x0).
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multiple binary forms - example

If now x0 = xn and y0 = yν for positive integers n and ν, then f shows a closure

and there is a geometric realization in form of a configuration

∆k,κn,ν (x0, x1, . . . , xn−1; y0, y1, . . . , yν−1)

with nκ = kν pairs of elements.

If f defines infinitely many such configurations, then f shows a porism.

For conditions on multiple binary forms to be poristic, see: A.B. Coble: Multiple binary

forms with closure property. American J. 43 (1921), 1–19.

32



multiple binary forms - the closing example

c2

c4

A special form f describes the configura-

tion ∆:

If a c4 passes through the 16 points

of checker board grid (projective version)

formed by 2 · 4 tangents of a c2, then

there are infintely many such diagrams with

points on c4 and lines tangent to c2.

33



Thank You For Your Attention!
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