10th SIAM Conference on Geometric Design and Computing November 4–8, 2007, San Antonio, TX, USA

On two-parameter families of spheres with rational envelopes

Boris Odehnal

(joint work with Martin Peternell)

Vienna University of Technology

aims & results

- circumvent constructions using square roots
- find rational parameterizations of envelopes
- understand the geometry behind
- give examples
- generalize the construction

related work

[1] J. Kosinka, B. Jüttler: MOS surfaces: Medial surface transforms with rational domain boundaries. The Mathematics of Surfaces XII, Springer, 2007, 245–262. [2] W. Lü: Rationality of offsets to algebraic curves and surfaces. Applied Mathematics 9 (Ser. B), 1994, 265–278. [3] H. Pottmann: Rational curves and surfaces with rational offsets. CAGD 12 (1995), 175–192. [4] M. Peternell, H. Pottmann: A Laguerre geometric approach to rational offsets. CAGD 15 (1998), 223-249. [5] M. Peternell, B. Odehnal, L. Sampoli: Quadratic two-parameter families of spheres with rational envelopes. CAGD, to appear. [6] M. Peternell, B. Odehnal: Two-parameter families of spheres with rational envelopes. (in preparation)

what are we doing?

- study the geometry behind
- using the cyclographic model and some line geometry
- compute two-dim. surfaces S in $\mathbb{R}^{3,1}$ with prescribed normal planes
- apply cyclographic mapping
- compute the envelope in a constructive way using the cyclographic mapping

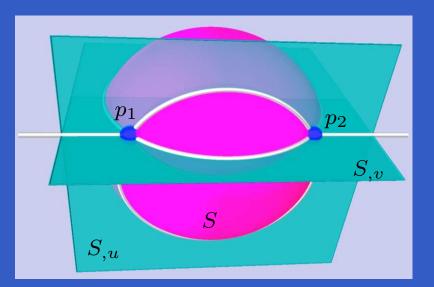
envelope construction: direct approach

2-parameter family of spheres

$$\langle x - s(u, v), x - s(u, v) \rangle = 0 \quad (1.0)$$

$$\langle x - s, s_{,u} \rangle = 0, \quad \langle x - s, s_{,v} \rangle = 0 \quad (1.1, 2)$$

contact points of sphere and envelope = intersection of line and sphere

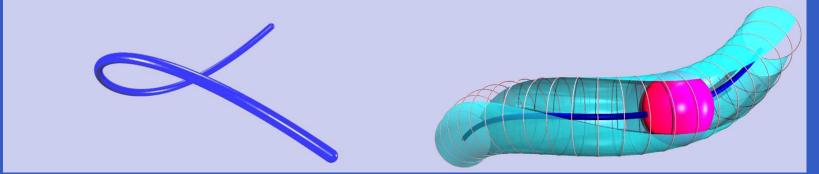


cyclographic mapping

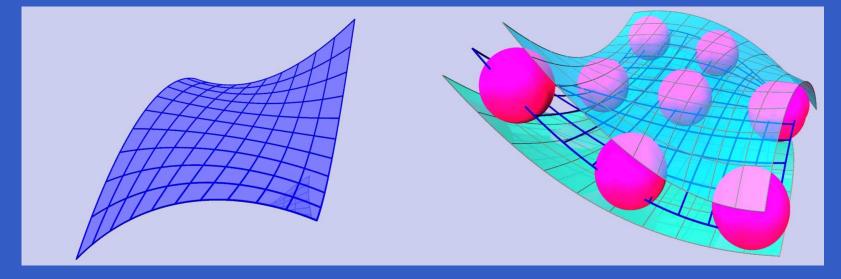
- sphere S = (c, r) in Euclidean 3-space \mathbb{R}^3 , $c \in \mathbb{R}^3 \dots$ center, $r \in \mathbb{R} \dots$ radius S likewise oriented according to sgn r
- cyclographic mapping $z^{-1}: S \mapsto s := (c, r) \in \mathbb{R}^4$
- metric in \mathbb{R}^4 $\langle x, y \rangle := x^T Dy, D := \text{diag} (1, 1, 1, -1)$ $\implies \mathbb{R}^4$ becomes a pseudo-Euclidean, or Minkowski space $\mathbb{R}^{3,1}$
- S, T touching spheres $\iff \langle s, t \rangle = 0$

cyclographic mapping

curve $c \subset \mathbb{R}^{3,1} \xrightarrow{z}$ canal surface in \mathbb{R}^3



2-surface $S \subset \mathbb{R}^{3,1} \xrightarrow{z}$ 2-param. family of spheres



envelope construction: the other way

- \mathbb{P}^4 . . . projective closure of $\mathbb{R}^{3,1}$
- ω : $y_0 = 0$... ideal space, $y_4 = 0$... base space \mathbb{R}^3
- metric defines a quadric in ω

$$\Omega: \langle y, y \rangle = y_1^2 + y_2^2 + y_3^2 - y_4^2 = 0$$

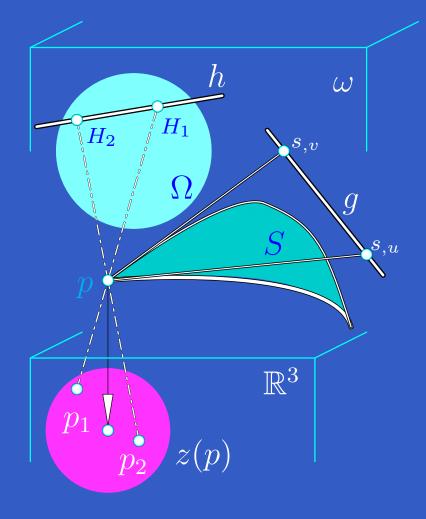
polar system of Ω defines orthogonality in ℝ^{3,1}
 Ω-conjugate points are ideal points of pe-orthogonal directions

envelope construction: the other way

- $S \subset \mathbb{R}^{3,1}$... 2-dim. surface
- T_p . . . tangent plane at p
- $g := T_p \cap \omega \dots T_p$'s ideal line
- $G := \{g | \forall p \in S\}$... congruence of lines in ω
- $h \dots \Omega$ -polar image of $g \iff h$ is ideal line of normal plane N_p at p (H =congruence of ...)

S

envelope construction: contact points



- $h \cap \Omega = \{H_1, H_2\}$
- Isotropic lines $H_i p$ of $\mathbb{R}^{3,1}$ intersect the base space at the contact points p_i of the sphere z(p) with the envelope.
- z(p)'s center is obtained by the canonical projection to \mathbb{R}^3 .

main theorem: a generalization of the LN-property

Theorem If the ideal lines of *S*'s normal planes form a fibration of ω then the cyclographic image of *S* can be parameterized rationally.

Remark *H* is a fibration of ω . \iff *H* sends a unique line through each point of ω . computing rational parameterizations = proof of the theorem

 start with the rational parameterization of Ω w = (2x, 2y, 1 - x² - y², 1 + x² + y²)
 solve the system of equations (1.1,2)

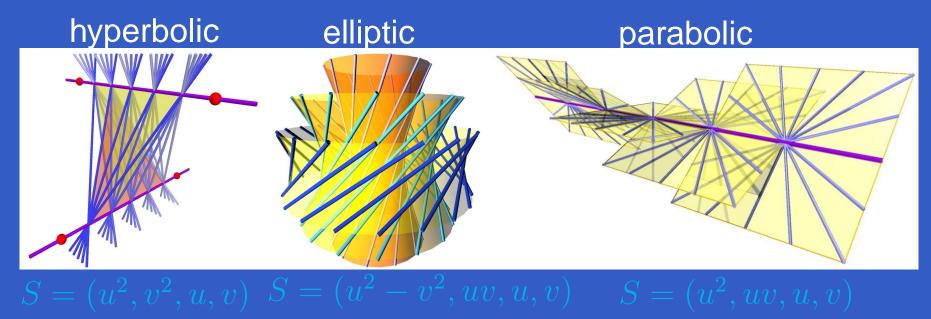
 $\langle w, s_{,u} \rangle = 0$ and $\langle w, s_{,v} \rangle = 0$

in order to reparameterize *S* such that the cyclographic image becomes rationally parameterized

• *H* is a fibration of ω . \iff There exists a unique solution $\{u(x, y), v(x, y)\}$.

quadratic triangular Bézier surfaces I

G, H are linear line congruences in ω



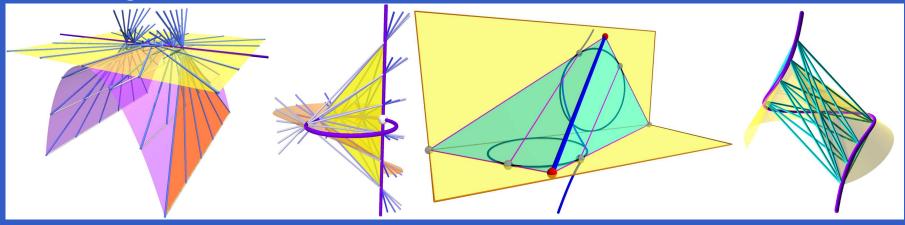
5 types in \mathbb{R}^4 according to:

[7] J. Peters, U. Reif: 42 equivalence classes of quadratic triangular Bézier surfaces. CAGD 15 (1998), 459–473. quadratic triangular Bézier surfaces II

G, H are chords of spatial cubic curves in ω

degenerate cubic

twisted cubic



 $S = \left(u^2 + v, v^2, uv, u
ight)$

 $S = (u^2, v^2, uv, u)$

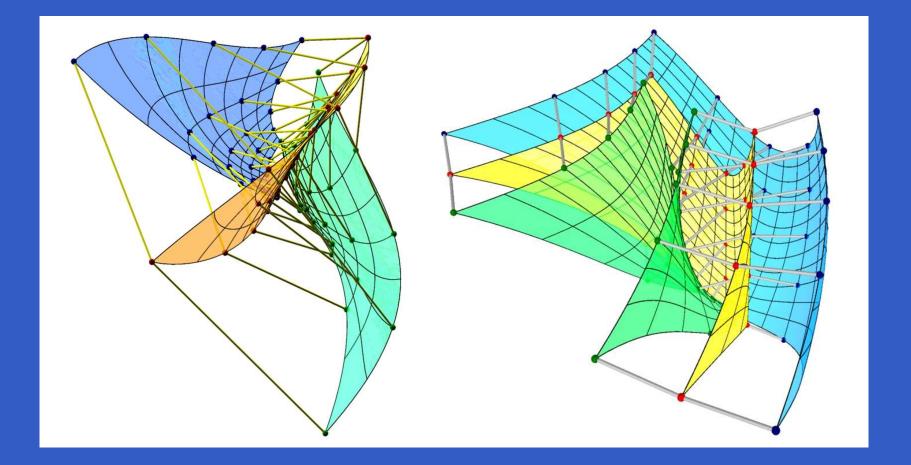
These five types are examples of low degree rational fibrations of ω .

examples I

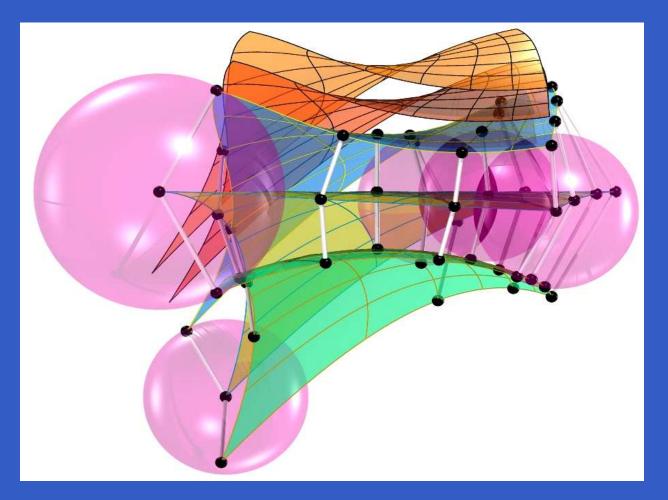


– p. 15

examples II



examples III



Offsets of envelopes also admit rational parameterizations.

generalizations = future work

start with a fibration of the ideal space

consider each line as intersection of planes from certain families

prescribe two support functions

for hyperplanes in $\mathbb{R}^{3,1}$ through the given ideal lines/planes

support functions

cannot be chosen independently

compute S as envelope of its tangent planes

by intesecting two hyperplanes

determine the cyclographic image of S and compute the reparameterization

•			
•			
•			

Thank You For Your Attention!