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aims & results

• circumvent constructions using square roots
• find rational parameterizations of envelopes
• understand the geometry behind
• give examples
• generalize the construction
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what are we doing?

• study the geometry behind
• using the cyclographic model and some line

geometry

• compute two-dim. surfaces S in R
3,1 with

prescribed normal planes
• apply cyclographic mapping
• compute the envelope in a constructive way

using the cyclographic mapping
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envelope construction: direct approach

2-parameter family of spheres

〈x− s(u, v), x − s(u, v)〉 = 0 (1.0)

〈x− s, s,u〉 = 0, 〈x− s, s,v〉 = 0 (1.1, 2)

contact points of
sphere and envelope

=
intersection of line

and sphere
S

S,u

S,v

p1 p2
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cyclographic mapping

• sphere S = (c, r) in Euclidean 3-space R
3,

c ∈ R
3 . . . center, r ∈ R . . . radius

S likewise oriented according to sgn r

• cyclographic mapping
z−1 : S 7→ s := (c, r) ∈ R

4

• metric in R
4

〈x, y〉 := xTDy, D := diag (1, 1, 1,−1)
=⇒ R

4 becomes a pseudo-Euclidean, or
Minkowski space R

3,1

• S, T touching spheres ⇐⇒ 〈s, t〉 = 0
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cyclographic mapping

curve c ⊂ R
3,1 z

→ canal surface in R
3

2-surface S ⊂ R
3,1 z

→ 2-param. family of spheres

– p. 7



envelope construction: the other way

• P
4 . . . projective closure of R3,1

• ω : y0 = 0 . . . ideal space,
y4 = 0 . . . base space R

3

• metric defines a quadric in ω

Ω : 〈y, y〉 = y2
1
+ y2

2
+ y2

3
− y2

4
= 0

• polar system of Ω defines orthogonality in R
3,1

Ω-conjugate points are ideal points of
pe-orthogonal directions
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envelope construction: the other way

• S ⊂ R
3,1 . . . 2-dim. surface

• Tp . . . tangent plane at p

• g := Tp ∩ ω . . .Tp’s ideal line

• G := {g|∀p ∈ S} . . . congruence of lines in ω

• h . . .Ω-polar image of g ⇐⇒ h is ideal line of
normal plane Np at p (H = congruence of . . . )

p S

Tp

Np

g

h
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envelope construction: contact points

p

z(p)p2

p1

s,u

s,v

g

h

H1H2

ω

Ω

R
3

S

• h ∩ Ω = {H1, H2}

• Isotropic lines Hip of
R

3,1 intersect the
base space at the
contact points pi of
the sphere z(p) with
the envelope.

• z(p)’s center is ob-
tained by the canon-
ical projection to R

3.
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main theorem: a generalization of the LN-property

Theorem
If the ideal lines of S’s normal planes form a
fibration of ω then the cyclographic image of S
can be parameterized rationally.

Remark
H is a fibration of ω. ⇐⇒ H sends a unique line
through each point of ω.
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computing rational parameterizations = proof of the theorem

• start with the rational parameterization of Ω
w = (2x, 2y, 1 − x2 − y2, 1 + x2 + y2)

• solve the system of equations (1.1,2)

〈w, s,u〉 = 0 and 〈w, s,v〉 = 0

in order to reparameterize S such that the
cyclographic image becomes rationally
parameterized

• H is a fibration of ω. ⇐⇒ There exists a
unique solution {u(x, y), v(x, y)}.
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quadratic triangular Bézier surfaces I

G, H are linear line congruences in ω

hyperbolic

S = (u2, v2, u, v)

elliptic

S = (u2 − v2, uv, u, v)

parabolic

S = (u2, uv, u, v)

5 types in R
4 acccording to:

[7] J. Peters, U. Reif: 42 equivalence classes of quadratic triangular Bézier surfaces.
CAGD 15 (1998), 459–473.
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quadratic triangular Bézier surfaces II

G, H are chords of spatial cubic curves in ω

degenerate cubic

S = (u2 + v, v2, uv, u)

twisted cubic

S = (u2, v2, uv, u)

These five types are examples of low degree
rational fibrations of ω.
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examples I
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examples II
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examples III

Offsets of envelopes also admit rational parameterizations.
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generalizations = future work

• start with a fibration of the ideal space
consider each line as intersection of planes from certain families

• prescribe two support functions
for hyperplanes in R

3,1 through the given ideal lines/planes

• support functions
cannot be chosen independently

• compute S as envelope of its tangent planes
by intesecting two hyperplanes

• determine the cyclographic image of S and
compute the reparameterization
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Thank You For Your Attention!
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