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Outline

motivation — Why do we measure distances in central projections?

principal lines — parallel projection, central projection

constructive approach — a quartic surface point by point

algebraic properties — singular points and lines

special cases — cubic surface, surface of revolution
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Motivation

We want to avoid complicated constructions like this: But we cannot!
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And still there is this

naive question:

Isn’t there a line

where we can mea-

sure directly on its

image and get cor-

rect results?
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Principal lines: orthogonal and obligue parallel projection

orthogonal projection:

Principal lines are parallel to the image plane.

They are mapped congruent onto their images.
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obligue parallel projection:

Principal lines are parallel to the image plane.

They are mapped congruent onto their images.

There is a second kind of principal line l which is

not parallel to l (also mapped congruent onto its

image, not parallel to π)!
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Principal lines: central projection

central projection κ : R3⋆ → π ∼= R2:

O 6∈ π . . . . . . . . . . . . . . . . . . . . . eye point,

π . . . . . . . . . . . . . . . . . . . . . . . image plane,

R
3⋆ :=R3 \ {O}, P ′ :=κ(P ), Q′ :=κ(Q)

For any P ∈ [O,P ′] we find at least one

Q ∈ [O,Q′] such that

P ′Q′ = PQ.
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We find two Qs as long as P [O,Q] < P ′Q′.

Any such line [P,Q] can be called a principal line, but it is not mapped congruent

onto its image!

Usualy, principal lines of a central projection are parallel to π and mapped similar

onto their images.
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Constructive approach

assume P ∈ R3⋆ fixed with image P ′

All points Q′ ∈ π with P ′Q′ = s ∈ R+

(fixed s) gather on a circle cP ′,s⊂ π.

Endpoints Q of segments PQ with PQ = s

are located on a Euclidean sphere ΣP,s

(centered at P , radius s). R
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=⇒ The endpoints Q of segments PQ with

PQ = s such that P ′Q′ = s trace a quartic

curve q which is the intersection of the qua-

dratic cone ΓP ′,s = cP ′,s ∨O and the sphere

ΣP,s .
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Constructive approach

s varies (linearly) in R+ =⇒

linear family of quartic curves

q(s) =⇒
O

P
Φ

O

ΣP,s

π

Theorem:

The set of all endpoints Q of segments PQ that satisfy PQ = P ′Q′ form a quartic

surface Φ passing through P .
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Algebraic equation of Φ

some geometric objects and their equations

O . . . o = (d, 0, 0)T with d ∈ R+ . . . . . . . . . . . . . . . . eye point

π . . . x = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . image plane

πv . . . x = d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vanishing plane

P . . .p = (ξ, η, ζ)T with ξ 6= d . . . . . . . . . . . . . . . . “the point”

Q . . . x = (x, y , z)T with x 6= d . . . . . . . . . . . . . . . . . endpoints

ΛP . . . (x−ξ)
2+(y−η)2+(z−ζ)2=0 . . . isotropic cone at P

P ′ = κ(P ) = [O,P ] ∩ π . . . . . . . . . . . . . . . . . . . . κ-image of P

κ : (x, y , z)T 7→

(
dy

d − x
,
dz

d − x

)T
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Algebraic equation of Φ

looking for points Q with PQ = P ′Q′ (for fixed P ) yields

Φ : d2
(
(y(d−ξ)−η(d−x))2+(z(d−ξ)−ζ(d−x))2

)
=

= (d−ξ)2(d−x)2
(
(x−ξ)2+(y−η)2+(z−ζ)2

)

or, in terns of geometric objects

d2
(
‖πvp− (d − ξ)x‖

2 − ((d − ξ)π − ξπv )
2
)
= (d − ξ)2π2vΛP

Theorem (once again):

Φ is a quartic surface passing through O and P .
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Algebraic properties of Φ

Theorem:

1. Φ is uni-circular and has π’s ideal line p2 for a double line.

2. planes x = k (6= 0, d, ξ, 2d) ∩Φ: circles + two-fold ideal line p2

3. planes x = 2d / π ∩Φ: proper lines m ‖ l + three-fold line p2

4. planes πv / x = ξ ∩Φ: isotropic lines through O / P + two-fold line p2.

Proof:

1. homogenize equation of Φ by substituting x → X1X
−1
0 , y → X2X

−1
0 z →

X3X
−1
0 and insert X0 = 0 =⇒ ideal curve φ: X

2
1(X

2
1 +X

2
2 +X

2
3) = 0.

=⇒ X1 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .π’s ideal line (multiplicity 2),

X21 +X
2
2 +X

2
3 = 0 . . . . . . absolute conic of Eucl. geometry (multiplicity 1).

2. x = k , k ∈ R \ {0, d, ξ, 2d} are parallel to π:

substitute x = k into Φ’s equation =⇒ equation of circles, centered at
(
k,
η(d − k)(dξ + dk − kξ)

(k(d − ξ)(2d − k)
,
ζ(d − k)(dξ + dk − kξ)

(k(d − ξ)(2d − k)

)T
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Algebraic properties of Φ

=⇒ Curve of centers is a rational cubic space curve.

3. insert x = 2d / x = 0 into Φ’s equation:

l : 2(ξ − d)(ηy + ζz) = (ξ − 2d)‖p‖2 + d2ξ,

m : 2(ξ − d)(ηy + ζz) = ξ‖p‖2 − d(2d2 − 5dξ + 4ξ2),

obviously parallel, from Φ’s homogeneous equation, X31 splits off.

4. insert x = d / x = ξ into Φ’s equation:

besides some non-vanishing factors, we find

y2+z2=0 / (y−η)2+(z−ζ)2=0 . . . . . . . . . . . . . two pairs of isotropic lines

from Φ’s homogeneous equation, X21 splits off.
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Algebraic properties of Φ
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The quartic surface Φ with its circles in planes parallel to π and the line l .
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Algebraic properties of Φ

The ideal line

p2 of π is a

part of the dou-

ble curve of Φ.

The two planes

π and x =

2d serve as tan-

gent planes of

Φ along p2 and

meet Φ along p2
(with multiplici-

ty 3) and l and

m appear as the

remaining linear

part.
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Algebraic properties of Φ

Theorem:

O and P are conical singularities on Φ.

Proof:

Singularities at O / P ⇐⇒ gradient of Φ vanishes at O / P .

Conical: (for sake of simplicity) translate Φ s.t. O 7→ (0, 0, 0)T / P 7→ (0, 0, 0)T

extract coefficient of X20 :

ΓO : d
2(ξ−d)2‖x‖2+2d2(d−ξ)x(ηy+ζz)=((d−ξ)4+ξ(2d+ξ)‖p‖2+ξ3(2d−ξ))x2

ΓP : ξ(−2d)(ξ−d)
2‖x‖2+2d2(ξ−d)x((ηy+ζz)=d2((d−ξ)2−‖p‖2+2ξ2)x2

ΓO / ΓP . . . quadratic cones, second order approximation of Φ at O / P

Computation of Γ· similar to computation of tangents at multiple points on planar

curves.

One family of circular sections of Γ· lies in planes parallel to π.
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Algebraic properties of Φ

The two singular

points O and

P are conical

nodes: The

second order

approximation

of Φ at O or

P are quadratic

cones. The

circular sections

of Φ lie in planes

that meet the

quadratic cones

ΓO and ΓP
along circles.
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Special cases

Φ is a quartic surface of revolution if P ∈ [O,H] and P 6= O,H.

Φ is the union of π and a cubic surface of revolution touching π at H if P = H.
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Thank You For Your Attention!
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