Distances and central Projections

Boris Odehnal

University of Applied Arts Vienna

Outline

- motivation Why do we measure distances in central projections?
- principal lines parallel projection, central projection
- constructive approach a quartic surface point by point
 - algebraic properties singular points and lines
 - special cases cubic surface, surface of revolution

Motivation

But we cannot!

And still there is this naive question:

Isn't there a line where we can measure directly on its image and get correct results?

Principal lines: orthogonal and obligue parallel projection

orthogonal projection:

Principal lines are parallel to the image plane. They are mapped congruent onto their images.

obligue parallel projection:

Principal lines are parallel to the image plane. They are mapped congruent onto their images.

There is a second kind of principal line $\overline{1}$ which is not parallel to 1 (also mapped congruent onto its image, not parallel to π)!

Principal lines: central projection

central projection $\kappa : \mathbb{R}^{3\star} \to \pi \cong \mathbb{R}^2$: $O \notin \pi$ eye point, π image plane, $\mathbb{R}^{3\star} := \mathbb{R}^3 \setminus \{O\}, P' := \kappa(P), Q' := \kappa(Q)$ For any $P \in [O, P']$ we find at least one

 $Q \in [O, Q']$ such that

$$\overline{P'Q'}=\overline{PQ}.$$

We find two Qs as long as $\overline{P[O,Q]} < \overline{P'Q'}$.

Any such line [P, Q] can be called a principal line, but it is not mapped congruent onto its image!

Usualy, principal lines of a central projection are parallel to π and mapped similar onto their images.

Constructive approach

assume $P \in \mathbb{R}^{3*}$ fixed with image P'All points $Q' \in \pi$ with $\overline{P'Q'} = s \in \mathbb{R}^+$ (fixed s) gather on a circle $c_{P',s} \subset \pi$. Endpoints Q of segments PQ with $\overline{PQ} = s$ are located on a Euclidean sphere $\Sigma_{P,s}$ (centered at P, radius s).

⇒ The endpoints Q of segments PQ with $\overline{PQ} = s$ such that $\overline{P'Q'} = s$ trace a quartic curve q which is the intersection of the quadratic cone $\Gamma_{P',s} = c_{P',s} \lor O$ and the sphere $\Sigma_{P,s}$.

Constructive approach

s varies (linearly) in $\mathbb{R}^+ \Longrightarrow$ linear family of quartic curves $q(s) \Longrightarrow$

Theorem:

The set of all endpoints Q of segments PQ that satisfy $\overline{PQ} = \overline{P'Q'}$ form a quartic surface Φ passing through P.

Algebraic equation of Φ

some geometric objects and their equations

 $O \dots \mathbf{o} = (d, 0, 0)^{\mathsf{T}} \text{ with } d \in \mathbb{R}^{+} \dots \text{ eye point}$ $\pi \dots x = 0 \dots \text{ image plane}$ $\pi_{\mathsf{V}} \dots x = d \dots \text{ vanishing plane}$ $P \dots \mathbf{p} = (\xi, \eta, \zeta)^{\mathsf{T}} \text{ with } \xi \neq d \dots \text{ vanishing plane}$ $Q \dots \mathbf{x} = (x, y, z)^{\mathsf{T}} \text{ with } x \neq d \dots \text{ endpoints}$ $\Lambda_{P} \dots (x - \xi)^{2} + (y - \eta)^{2} + (z - \zeta)^{2} = 0 \dots \text{ isotropic cone at } P$ $P' = \kappa(P) = [O, P] \cap \pi \dots \kappa \text{-image of } P$

$$\kappa : (x, y, z)^{\mathsf{T}} \mapsto \left(\frac{dy}{d-x}, \frac{dz}{d-x}\right)^{\mathsf{T}}$$

Algebraic equation of Φ

looking for points Q with $\overline{PQ} = \overline{P'Q'}$ (for fixed P) yields

$$\Phi: d^{2}\left((y(d-\xi)-\eta(d-x))^{2}+(z(d-\xi)-\zeta(d-x))^{2}\right) = (d-\xi)^{2}(d-x)^{2}\left((x-\xi)^{2}+(y-\eta)^{2}+(z-\zeta)^{2}\right)$$

or, in terns of geometric objects

$$d^{2} \left(\|\pi_{v} \mathbf{p} - (d - \xi) \mathbf{x}\|^{2} - ((d - \xi)\pi - \xi\pi_{v})^{2} \right) = (d - \xi)^{2} \pi_{v}^{2} \Lambda_{P}$$

Theorem (once again):

 Φ is a quartic surface passing through O and P.

Theorem:

- 1. Φ is uni-circular and has π 's ideal line p_2 for a double line.
- 2. planes $x = k \ (\neq 0, d, \xi, 2d) \cap \Phi$: circles + two-fold ideal line p_2
- 3. planes $x = 2d / \pi \cap \Phi$: proper lines $m \parallel l +$ three-fold line p_2
- 4. planes $\pi_v / x = \xi \cap \Phi$: isotropic lines through $O / P + \text{two-fold line } p_2$.

Proof:

- 1. homogenize equation of Φ by substituting $x \to X_1 X_0^{-1}$, $y \to X_2 X_0^{-1} z \to X_3 X_0^{-1}$ and insert $X_0 = 0 \implies$ ideal curve ϕ : $X_1^2 (X_1^2 + X_2^2 + X_3^2) = 0$. $\implies X_1 = 0 \qquad \dots \qquad \pi$'s ideal line (multiplicity 2), $X_1^2 + X_2^2 + X_3^2 = 0 \qquad \text{absolute conic of Eucl. geometry (multiplicity 1).}$
- 2. $x = k, k \in \mathbb{R} \setminus \{0, d, \xi, 2d\}$ are parallel to π :

substitute x = k into Φ 's equation \implies equation of circles, centered at

$$\left(k, \frac{\eta(d-k)(d\xi+dk-k\xi)}{(k(d-\xi)(2d-k))}, \frac{\zeta(d-k)(d\xi+dk-k\xi)}{(k(d-\xi)(2d-k))}\right)$$

 \implies Curve of centers is a rational cubic space curve.

3. insert x = 2d / x = 0 into Φ 's equation:

I:
$$2(\xi - d)(\eta y + \zeta z) = (\xi - 2d) \|\mathbf{p}\|^2 + d^2\xi$$
,
m: $2(\xi - d)(\eta y + \zeta z) = \xi \|\mathbf{p}\|^2 - d(2d^2 - 5d\xi + 4\xi^2)$,

obviously parallel, from Φ 's homogeneous equation, X_1^3 splits off.

4. insert $x = d / x = \xi$ into Φ 's equation:

besides some non-vanishing factors, we find $y^2+z^2=0 / (y-\eta)^2+(z-\zeta)^2=0$ two pairs of isotropic lines from Φ 's homogeneous equation, X_1^2 splits off.

The quartic surface Φ with its circles in planes parallel to π and the line /.

Algebraic properties of Φ

The ideal line p_2 of π is a part of the double curve of Φ . The two planes π and x =2*d* serve as tangent planes of Φ along p_2 and meet Φ along p_2 (with multiplicity 3) and / and *m* appear as the remaining linear part.

Theorem:

O and P are conical singularities on Φ .

Proof:

Singularities at $O / P \iff$ gradient of Φ vanishes at O / P. Conical: (for sake of simplicity) translate Φ s.t. $O \mapsto (0, 0, 0)^T / P \mapsto (0, 0, 0)^T$ extract coefficient of X_0^2 :

 $\Gamma_{O}: d^{2}(\xi-d)^{2} \|\mathbf{x}\|^{2} + 2d^{2}(d-\xi)x(\eta y + \zeta z) = ((d-\xi)^{4} + \xi(2d+\xi)\|\mathbf{p}\|^{2} + \xi^{3}(2d-\xi))x^{2}$ $\Gamma_{P}: \xi(-2d)(\xi-d)^{2} \|\mathbf{x}\|^{2} + 2d^{2}(\xi-d)x((\eta y + \zeta z) = d^{2}((d-\xi)^{2} - \|\mathbf{p}\|^{2} + 2\xi^{2})x^{2}$

 $\Gamma_O / \Gamma_P \dots$ quadratic cones, second order approximation of Φ at O / PComputation of Γ . similar to computation of tangents at multiple points on planar curves.

One family of circular sections of Γ . lies in planes parallel to π .

Algebraic properties of Φ

The two singular points O and *P* are conical nodes: The second order approximation of Φ at O or *P* are quadratic The cones. circular sections of Φ lie in planes that meet the quadratic cones Γ_O and Γ_P along circles.

Special cases

 Φ is a quartic surface of revolution if $P \in [O, H]$ and $P \neq O, H$.

 Φ is the union of π and a cubic surface of revolution touching π at H if P = H.

Thank You For Your Attention!

references

[Br] H. Brauner: Lehrbuch der konstruktiven Geometrie. Springer-Verlag, Wien, 1986.

[Bu] W. Burau: Algebraische Kurven und Flächen. De Gruyter, 1962.

- [FI] K. Fladt & A. Baur: Analytische Geometrie spezieller Flächen und Raumkurven. Vieweg, Braunschweig, 1975.
- [Ho] F. Hohenberg: *Konstruktive Geometrie in der Technik.* 3rd Edition, Springer-Verlag, Wien, 1966.
- [Mu] E. Müller: Lehrbuch der Darstellenden Geometrie. Vol. 1, B.G. Teubner, Leipzig-Berlin, 1918.
- [Wu] W. Wunderlich: *Darstellende Geometrie*. 2 Volumes, BI Wissenschaftsverlag, Zürich, 1966 & 1967.