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rough sketch of the talk

in the plane isoptics, autoisoptics, equioptics

in three space isoptics of polyhedra, spatial Thaloids

definition of isoptic surfaces only for developable surfaces

helical and spiral surfaces invariant surfaces

algebraic developables computational problems

monomial curves, local expansions projective generation of orthoptics

examples cubics, quartics



in the plane: isoptic, equioptic, autoisoptic

isoptic curve cα:

locus of points from which a

curve c is seen at the constant

angle 0 < α < π. Tangents

of c meet at constant angle

α on cα. [2,8,12,13,14]

autoisoptic curve:

The curve c is its own isoptic

to some angle.

Such curves can be determi-

ned only approximately and

numerically. [11,15]

Occurs seldomly.

equioptic curve:

The curve e is the locus of

points from which two curves

c1 and c2 are seen at the sa-

me (not necessarily constant)

angle. [10]
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None of these can be found in three dimensional space, since arbitrarily chosen pairs

of tangents of a space curve are skew (besides maybe countably many exceptions).
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in three-space: isoptic surfaces

Spatial angle measures (surfaces on the Euclidean unit sphere)

can be used to define an isoptic surface of a polyhedron. [1]

Disadvantages:

These isoptic surfaces can only be determined pointwise and nu-

merically. An analytic representation (parametrization, equation)

is missing.

e f

Generalized Thaloids:

A spatial analog of the Theorem of the Angle of Circumference:

Choose those planes from the pencils about (skew) lines e and f

that enclose a fixed angle and intersect them. The intersections

are the rulings of quadrics and quartics, the isoptic ruled surfaces

of the pairs (e, f ) of lines. [4]
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in three-space: dual curves, developables

g
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The one-parameter family of osculating pla-

nes of a space curve g is a dual curve and

envelops a developable (ruled surface) R.

The curve g (as the curve of regression)

and R define each other mutually.

Definition:

The isoptic ruled surface Jα of a developa-

ble (ruled surface) R is the locus of inter-

section lines j of pairs (τ1, τ2) of tangent

planes of R that enclose the angle α.
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cones and cylinders

Theorem:

1. Isoptic ruled surfaces of cylinders are cylinders.

2. Isoptic ruled surfaces of cones are cones.

Sketch of a proof:

1. Tangent planes of a cylinder Λ are parallel to a

certain direction. Isoptics of a cylinder are cylinders

erected over planar isoptics of an orthogonal cross

section of Λ.

2. Tangent planes of a cone Γ pass through a com-

mon point. Tangent planes of Γ that enclose a fixed

angle also pass through this point.

Isoptic cones Γα of Γ intersect concentric spheres

Σ along spherical isoptics γα of γ = Γ ∩Σ.
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helical and spiral developables
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Theorem:

The isoptic ruled surfaces of helical/spiral deve-

lopables are helical/spiral ruled surfaces.

Sketch of a proof:

Helical/spiral surface are invariant under a ge-

nerating one-parameter subgroup of the Eucli-

dean/equiform group of motions. So are the

terms tangent plane and angle. [9]

Among the isoptic ruled surfaces there also de-

velopable surfaces.

Cylinders and cones are also invariant surfaces.
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algebraic developables: how to compute isoptics?

The curve g of regression determines the

developable R.

g(t) : I ⊂ R→ R3

parametrization over some interval I

Tangent planes of R / osculating planes of

g envelop R.

σ : 〈g3(t), x − g〉 = 0 . . . with (unit)

binormal vector g3 (of g)

optic angle α between two tangent planes

τ1 = σ(u), τ2 = σ(v)

cosα = 〈g3(u),g3(v)〉 (⋆)

for fixed α a curve p in the [u, v ]-plane

A pair of tangent planes that enclose the

angle α . . .

. . . corresponds to a point (u0, v0) of the

curve p.

Crucial point: Solving (⋆) explicitly for u or v is in general impossible.

Most cases: The curve c is of high genus and misses a useful parametrization.

Therefore: j(u, v , w) = τ1(u) ∩ τ2(v) is a parametrization of chords of g.

The implicitization of j = x by eliminating u or v with (⋆) yields an equation of Jα.
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local expansions, monomial parametrizations – only orthoptics

Local expansions of g correspond to local expansions of R. Why not try:

g(t) =
(

at i , bt j , ctk
)

, with t ∈ R, 1 ≤ i < j < k ∈ N, a, b, c ∈ R.

For orthoptics, the normalization of g3 is obsolete:

g3(t) =
(

bcjk(k − j)tk−i , caki(i − k)tk−j , abi j(j − i)
)

.

factor t i+j−3 dispensable, since i + j − 3 is at least 0 =⇒ (⋆) becomes the equation

of a degree-2(k-i)-curve

p : (bcjk)2(k−j)2(uv)k−i+(caki)2(i−k)2(uv)k−j+(abi j)2(j−i)2=0. (⋆⋆)

p is always singular, splits into at most k− i equilateral hyperbolae (in the [u, v ]-plane).

equations of hyperbolae uv = zµ, were zµ is a root of (⋆⋆) with z = uv .

Theorem: The orthoptic ruled surfaces of the developables with monomial curves of

regression consist of at most (not necessarily real) k− i components. Each component

is generated by a projective mapping u 7→ v(u) acting on the curve of regression

and assigning to each point (and osculating plane) the corresponding point with the

orthogonal osculating plane. The rulings of the orthoptic surface are the intersection

lines of corresponding planes.
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examples
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g(t) =

(

At,Bt2,
1

3AC
(B4 + C2)t3

)

cubic parabola with a pair of orthoptic hy-

perbolic paraboloids

g(t) =

(

1

2
At2,

1

3
Bt3,

B2(1 + C2)

8A(1− C2)
t4
)

cusped quartic of the 2nd kind with a cubic

isoptic of multiplicity two [3]
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Thank You For Your Attention!

12


