7th International Conference on MATHEMATICAL METHODS for CURVES and SURFACES June 26 – July 1, 2008, Tønsberg, Norway

Subdivision schemes for ruled surfaces and channel surfaces

Boris Odehnal

Vienna University of Technology

Aims & Motivation

- approximation of ruled / channel surfaces by discrete models
- adapt known subdivision schemes for sets of lines / spheres
- use appropriate model spaces
- circumvent parameterizations

- •
- What are we going to do?
 - given a coarse model of a ruled / channel surface = finite set of lines / spheres
 - looking for a finer model (insert new lines / spheres)
 - should lead to a pleasing (smooth) limit

Ruled surfaces

- smooth / discrete
 1-param. family of
 lines (curve)
- directrix l, unit VF r parallel to rulings

 central curve c: $c = l - \langle \dot{l}, \dot{r} \rangle / \langle \dot{r}, \dot{r} \rangle r$ locus of maximum Gaussian curvature

Klein model of line space

lines l + v · r → (r, l × r) = (g, g)
Plücker coordinates (g, g) ∈ ℝ³⁺³ satisfy
M⁴: ⟨g, g⟩ = 1, ⟨g, g⟩ = 0
ruled surfaces are curves in M⁴

- •
- **Subdivision schemes for curves**

 limits and generalizations are known: different mascs, ternary schemes, ...

Subdivision schemes for curves

originally for data in affine space

generalized to data from arbitrary manifolds:

geodesic subdivision

subdivison + projection

- •
- **Algorithm 1: subdivision + projection**
 - discrete ruled surface = polygon in M⁴ (vertices only)
 - apply subdivision scheme to data
 - project new vertices into M^4

 $(g,\overline{g}) = \left(\frac{p}{\|p\|}, \frac{\overline{p}}{\|p\|} - \frac{p\langle p, \overline{p} \rangle}{\|p\|^3}\right)$

Algorithm 1: examples

reproducing Plücker's conoid

algorithm handles torsal ruled surfaces properly

- **Algorithm 2: central curve + spherical image**
 - compute a discrete version of the central curve
 - refine the discrete version of the central curve
 - refine discrete spherical image of the rulings

Algorithm 2: examples

approximating six arbitrarily given lines

surface of Möbius type

Algorithm 3: motion of the Sannia frame

- Sannia frames define discrete 1-pm. motion
- refine Sannia motion by means of geodesic subdivision

 geodesics = helical motions

 computing intermediate positions

Algorithm 3: examples

approximating four arbitrarily given lines

data from a helical surface

Channel surfaces

- use the cyclographic model space
- sphere $\Sigma(c, r)$ with center c and radius r is represented by a point $(c_1, c_2, c_3, r) \in \mathbb{R}^4$
- contact of spheres defines a metric
- model space is pseudo-Euclidean (Minkowskian) $\mathbb{R}^{3,1}$
- curves in $\mathbb{R}^{3,1} \leftrightarrow$ channel surfaces in \mathbb{R}^3

Approximation of channel surfaces: examples

- Chaikin's scheme in Minkowskian space $\mathbb{R}^{3,1}$

Dyn's scheme for the same input

characteristic circles

- use a point model for circles in Euclidean space
- circle C(A, c, r) (axis, center, radius) represented by $(a, \overline{a}, \alpha, r)$ with $\langle a, \overline{a} \rangle = 0$ and $c = a \times \overline{a} + \alpha a$
- circles correspond to points in a 6-dim MF in \mathbb{R}^8
- subdivison + projection allows to refine an initial set of characteristic circles

refining an initial set of circles

References

- [S1] G.M. Chaikin: *An algorithm for high speed curve generation.* Computer Graphics and Image Processing 3 (1974), 346–349.
- [S2] N. Dyn, J.A. Gregory, D. Levin: A four-point interpolatory subdivision scheme for curve design. Comp. Aided Geom. Design 4 (1987), 257–268.
- [S3] T. de Rose, J. Stollnitz, D. Salesin: Wavelets for computer graphics. Morgan Kaufmann, San Francisco, 1996.
- [S4] J. Wallner, N. Dyn: Convergence and C¹-analysis of subdivision schemes on manifolds by proximity. Comp. Aided Geom. Design 22/7 (2005), 593–622.
- [S5] J. Wallner, E. Nava Yazdani, P. Grohs: *Smoothness properties of Lie group subdivision schemes.* Multiscale Modeling and Simulation 6 (2007), 493–505.
- [DG] R. Sauer: *Differenzengeometrie*. Springer-Verlag, 1970.
- [LG1] J. Hoschek: *Liniengeometrie*. Bibliographisches Institut, Zürich, 1971.
- [LG2] H. Pottmann, J. Wallner: *Computational Linegeometry.* Springer-Verlag, 2001.
- [LG3] E.A. Weiß: *Einführung in die Liniengeometrie & Kinematik.* B.G. Teubner, 1935.

- •
- •

Thank you for your attention!