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Aims & Motivation

• approximation of ruled / channel surfaces
by discrete models

• adapt known subdivision schemes
for sets of lines / spheres

• use appropriate model spaces

• circumvent parameterizations
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What are we going to do?

• given a coarse model of a ruled / channel
surface = finite set of lines / spheres

• looking for a finer model (insert new lines /
spheres)

• should lead to a pleasing (smooth) limit
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Ruled surfaces

l

r
• smooth / discrete

1-param. family of
lines (curve)

• directrix l, unit VF r
parallel to rulings

• central curve c:

c = l − 〈l̇, ṙ〉/〈ṙ, ṙ〉r

• locus of maximum
Gaussian curvature
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Klein model of line space

• lines l + v · r → (r, l × r) = (g, g)

• Plücker coordinates (g, g) ∈ R
3+3 satisfy

M 4 : 〈g, g〉 = 1, 〈g, g〉 = 0

• ruled surfaces are curves in M 4
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Subdivision schemes for curves

• interpolating scheme by DLG

• approximating scheme: Chaikin’s corner
cutting

• limits and generalizations are known: different
mascs, ternary schemes, . . .
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Subdivision schemes for curves

• originally for data in affine space

• generalized to data from arbitrary manifolds:

• geodesic subdivision

• subdivison + projection
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Algorithm 1: subdivision + projection

• discrete ruled surface = polygon in M 4

(vertices only)

• apply subdivision scheme to data

• project new vertices into M 4
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Algorithm 1: examples

• reproducing Plücker’s conoid

• algorithm handles torsal ruled surfaces
properly
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Algorithm 2: central curve + spherical image

• compute a discrete version of the central
curve

• refine the discrete version of the central curve

• refine discrete spherical image of the rulings
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Algorithm 2: examples

• approximating six arbitrarily given lines

• surface of Möbius type
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Algorithm 3: motion of the Sannia frame

e1

e3

e2

• Sannia frames
define discrete 1-pm.
motion

• refine Sannia motion
by means of geode-
sic subdivision

• geodesics = helical
motions

• computing interme-
diate positions
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Algorithm 3: examples

• approximating four arbitrarily given lines

• data from a helical surface
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Channel surfaces

• use the cyclographic model space

• sphere Σ(c, r) with center c and radius r is

represented by a point (c1, c2, c3, r) ∈ R
4

• contact of spheres defines a metric

• model space is pseudo-Euclidean
(Minkowskian) R3,1

• curves in R
3,1 ↔ channel surfaces in R

3

– p. 14/19



Approximation of channel surfaces: examples

• Chaikin’s scheme in Minkowskian space R
3,1

• Dyn’s scheme for the same input
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characteristic circles

• use a point model for circles in Euclidean
space

• circle C(A, c, r) (axis, center, radius)
represented by (a, a, α, r) with 〈a, a〉 = 0 and
c = a× a+ αa

• circles correspond to points in a 6-dim MF in
R

8

• subdivison + projection allows to refine an
initial set of characteristic circles
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refining an initial set of circles
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Thank you for your attention!
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