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Aims and scope

present some generalizations (old and new ones)

collect some results

formulation in a more general setting (projective geometry)
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Gergonne point

∆ = {A,B,C} . . . triangle in Euclidean plane, Γ0 . . . ∆’s incircle
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Cevians [A, T1], [B, T2], [C, T3] are concurrent in G = X7.
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Gergonne point (variation)
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Replace incircle with a concentric one, apply scaling with center I = X1 to contact

points Ti =⇒ again concurrent cevians [HG 2008]
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More Gergonne points
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X11 (Feuerbach point)nine-point circle h

X4 (orthocenter)

The generalized Gergonne points for

any scaling factor trace an equilateral

hyperbola h.

A, B, C, X1, X4, ∈ h

X11 . . . center of h
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Gergonne points are Brianchon points
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Brianchon’s theorem is va-

lid even for three pairs of

coinciding tangents of a

conic section.

=⇒ Any conic section tangent to the sides of ∆ defines its own Gergonne point (Brian-

chon point).
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Don’t forget about the excircles!
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Each excircle Γi determines a

unique Gergonne point Gi .

X8 (Nagel’s point) = isotomic con-

jugate of X7 =⇒ The lines

[A,G1], [B,G2], [C,G3]

are concurrent in X8.

Any triangle has four Gergon-

ne/Nagel points.
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Generalized Nagel points

The four Nagel points of ∆ are the

isotomic conjugates of the respec-

tive Gergonne points.
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More Gergonne and Nagel points

Construction of [HG 2008] applied to the excircles yields three equilateral hyperbolae hi
full of Gergonne points.

A, B, C, X4, Ii ∈ hi

The pencil of equilateral hyperbolae circumscribed to a triangle is well-known, see [DG

1903] (results by Poncelet, Gergonne, Steiner, etc. before 1830):

Centers are located on the nine-point circle, singular curves are (side of ∆) ∪ (respective

altitude), . . .

Centers Fi of hi are the vertices of the Feuerbach triangle ∆F of ∆.
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More Gergonne and Nagel points

Pencil of equilateral hyperbolae cir-

cumscribed to ∆

contains h, h1, h2, h3

contains further the hyperbolae of

Kiepert, Jěrabek, and Feuerbach.

Nagel points are located on li-

nes concurrent in

X69=isotomic conjugate of X4
passing through X75, . . .
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What makes a circle?

Incircle and excircles are conic sections tangent to three lines and passing through two

specific points (absolute points I, I of Euclidean geometry).

Replacing (I, I) by any other pair (U,U) of points (new absolute figure) Gergonne points

are still well-defined (Brianchon points).
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Projective version 1

Any pair of points (U, U) (in admissable position) defines four Gergonne points

with respect to a given triangle ∆.

admissable position: no point on any side of ∆, . . .

pair of real / conjugate complex points (U, U) =⇒

pseudo-Euclidean (Minkowskian) / Euclidean geometry (ideal line ω := [U,U])

isotomic mapping can be formulated in a projective invariant way =⇒

Any pair of points (U, U) (in admissable position) defines four Nagel points

with respect to a triangle ∆.
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Gergonne and Nagel points together
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Projective version 2

U, U are fixed points of an involutive mappipng ι : ω → ω =⇒

Any pair of points (U,U) / any involutive mapping ι : ω → ω defines four

Gergonne and four Nagel points with respect to a triangle ∆ = {A,B, C}.

ι elliptic =⇒ Euclidean geometry

ι hyperbolic =⇒ pseudo-Euclidean (Minkowskian) geometry

admissable position:

ω 6= [A,B], [B,C], [C,A],

ι’s fixed points not on ∆’s sides
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Minkowskian version

No surprise: All four Gergonne

points also appear in Minkow-

skian plane.

[BS 1988] used results from af-

fine Geometry to find the Min-

kowskian version of (only one)

Gergonne point.
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Darboux’s cubic and nine-point circle

P . . . Point /∈ [A,B] ∪ [B,C] ∪ [C,A]

PAB . . .P ’s orthogonal projection to [A,B]

Darboux’s cubic d

locus of points P such that

[C, PAB], [A, PBC], [B, PCA]

are concurrent

A, B, C, X1, X3, X4, I1, I2, I3,

AB⊥, BC⊥, CA⊥ ∈ d
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Darboux’s cubic and nine-point circle
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Thank You for your attention!
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Who is who among triangle centers?

X1 incenter
X2 centroid
X3 circumcenter
X4 orthocenter
X5 nine-point center
X7 Gergonne point
X8 Nagel point
X11 Feuerbach point
X69 isotomic conjugate of X4,

symmedian point of anticomplementary triangle
X75 isotomic conjugate of X1
X181 perspector of ∆F and ∆

labelling of triangle centers according to [KM 1998]
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