14th Scientific-Professional Colloquium on Geometry and Graphics, September 6 – 10, 2009, Velika, Croatia

Generalized Gergonne Points

Boris Odehnal

Vienna University of Technology

Aims and scope

present some generalizations (old and new ones)

collect some results

formulation in a more general setting (projective geometry)

References

[BS 1988] P. Baptist, E.M. Schröder: *Merkwürdige Punkte von Dreiecken in euklidischen und Minkowskischen Ebenen. (Remarkable points of triangles in Euclidean and Minkowskian planes.)* Mitt. Math. Ges. Ham. **11**/5 (1988), 591–616.

[DG 1903] F. Dingeldey: *Kegelschnitte und Kegelschnittsysteme*. In: Encykl. d. Math. Wiss. III, C1, 94–96.

[HG 2008] M. Hoffmann, S. Gorjanc: *On the generalized Gergonne point and beyond.* Forum Geometricorum **8** (2008) 151–155.

[KM 1998] C. Kimberling: *Triangle centers and central triangles.* Congressus Numerantium, Vol. 129, Winniped, Canada, 1998.

[OD 2009] B. Odehnal: *Generalized Gergonne and Nagel points*. Geometry Preprint Series, Viennna University of Technology, Technical Report No. 197, June 2009.

Gergonne point

 $\Delta = \{A, B, C\} \dots$ triangle in Euclidean plane, $\Gamma_0 \dots \Delta$'s incircle

Cevians $[A, T_1]$, $[B, T_2]$, $[C, T_3]$ are concurrent in $G = X_7$.

Gergonne point (variation)

Replace incircle with a concentric one, apply scaling with center $I = X_1$ to contact points $T_i \implies$ again concurrent cevians [HG 2008]

More Gergonne points

The generalized Gergonne points for any scaling factor trace an equilateral hyperbola h.

A, B, C,
$$X_1$$
, X_4 , $\in h$

 X_{11} ... center of h

Gergonne points are Brianchon points

 \implies Any conic section tangent to the sides of Δ defines its own Gergonne point (Brianchon point).

Each excircle Γ_i determines a unique Gergonne point G_i .

 X_8 (Nagel's point) = isotomic conjugate of $X_7 \implies$ The lines

 $[A, G_1], [B, G_2], [C, G_3]$ are concurrent in X_8 .

Any triangle has four Gergonne/Nagel points.

More Gergonne and Nagel points

Construction of [HG 2008] applied to the excircles yields three equilateral hyperbolae h_i full of Gergonne points.

A, B, C, X_4 , $I_i \in h_i$

The pencil of equilateral hyperbolae circumscribed to a triangle is well-known, see [DG 1903] (results by Poncelet, Gergonne, Steiner, etc. before 1830):

Centers are located on the nine-point circle, singular curves are (side of Δ) \cup (respective altitude), ...

Centers F_i of h_i are the vertices of the Feuerbach triangle Δ_F of Δ .

More Gergonne and Nagel points

Pencil of equilateral hyperbolae circumscribed to $\boldsymbol{\Delta}$

contains h, h_1 , h_2 , h_3

contains further the hyperbolae of Kiepert, Jeřabek, and Feuerbach.

Nagel points are located on lines concurrent in X_{69} = isotomic conjugate of X_4 passing through X_{75} , ...

What makes a circle?

Incircle and excircles are conic sections tangent to three lines and passing through two specific points (absolute points I, \overline{I} of Euclidean geometry).

Replacing (I, \overline{I}) by any other pair (U, \overline{U}) of points (new absolute figure) Gergonne points are still well-defined (Brianchon points).

Projective version 1

Any pair of points (U, \overline{U}) (in admissable position) defines four Gergonne points with respect to a given triangle Δ .

admissable position: no point on any side of Δ , ...

pair of real / conjugate complex points $(U, \overline{U}) \Longrightarrow$

pseudo-Euclidean (Minkowskian) / Euclidean geometry (ideal line $\omega := [U, \overline{U}]$)

isotomic mapping can be formulated in a projective invariant way \Longrightarrow

Any pair of points (U, \overline{U}) (in admissable position) defines four Nagel points with respect to a triangle Δ .

Gergonne and Nagel points together

Projective version 2

 U, \overline{U} are fixed points of an involutive mappipng $\iota : \omega \to \omega \Longrightarrow$

Any pair of points (U, \overline{U}) / any involutive mapping $\iota : \omega \to \omega$ defines four Gergonne and four Nagel points with respect to a triangle $\Delta = \{A, B, C\}$.

 ι elliptic \Longrightarrow Euclidean geometry

 ι hyperbolic \Longrightarrow pseudo-Euclidean (Minkowskian) geometry

admissable position:

 $\omega \neq [A, B], [B, C], [C, A],$

 $\iota\text{'s}$ fixed points not on $\Delta\text{'s}$ sides

Minkowskian version

No surprise: All *four* Gergonne points also appear in Minkow-skian plane.

[BS 1988] used results from affine Geometry to find the Minkowskian version of (only one) Gergonne point.

Darboux's cubic and nine-point circle

 $P \dots \text{Point} \notin [A, B] \cup [B, C] \cup [C, A]$ $P_{AB} \dots P \text{'s orthogonal projection to } [A, B]$ **Darboux's cubic** *d*locus of points *P* such that $[C, P_{AB}], \quad [A, P_{BC}], \quad [B, P_{CA}]$ are concurrent

В

16

A, B, C, X₁, X₃, X₄, I_1 , I_2 , I_3 , AB^{\perp}, BC^{\perp}, CA^{\perp} \in d Darboux's cubic and nine-point circle

Thank You for your attention!

Who is who among triangle centers?

- X_1 incenter
- X_2 centroid
- X_3 circumcenter
- X_4 orthocenter
- X_5 nine-point center
- X_7 Gergonne point
- X₈ Nagel point
- X_{11} Feuerbach point
- X_{69} isotomic conjugate of X_4 ,
 - symmedian point of anticomplementary triangle
- X_{75} isotomic conjugate of X_1
- X_{181} perspector of Δ_F and Δ

labelling of triangle centers according to [KM 1998]