A Miquel-Steiner Transformation

Boris Odehnal

University of Applied Arts Vienna

hopefully within 15 minutes

- recalling some Miquel theorems
- defining "the" Miquel-Steiner transformation μ
- properties, exceptional sets, inverse
- images of particular lines, concics, cubics under μ
- aiming at geometric meaning of some entries of Kimberling's *Encyclopedia of Triangle Centers* and Gibert's *Catalogue of Triangle Cubics*

These are not the Miquel theorems I'm talking about!

the choice of A', B', C'.

Three circles meet in one Miquel's 5 Circles Theorem: point M independent of five concyclic points: 1, ..., 5

Miquel's 6 Circles Theorem: four circles share triple points \implies remaining 4 intersections concyclic

Miquel-Steiner Theorem

Each pair of diagonal points in a complete quadrilateral defines a Miquel point as the meet of four circumcircles of certain subtriangles:

 $e.g.: M_2 \in k_{ABD_3}, k_{CDD_3}, k_{ADD_1}, k_{BCD_1}.$

Any triangle $\Delta = ABC$ together with any admissible point Z defines 3 Miquel points M_i .

$$M_1 M_2 M_3 =: \Delta_M \stackrel{P}{\overline{\wedge}} \Delta$$

"the" Miquel-Steiner transformation

Miquel-Steiner transformation $\mu: Z \mapsto P$ μ is a quadratic Cremona transformation: $\xi: \eta: \zeta \mapsto [bc(b\eta + c\zeta)]^{-1}: \dots: \dots$ μ is not involutive! μ 's exceptional triangle = Δ_a (anticomplementary / -medial triangle of Δ) μ leaves X_4 (orthocenter of Δ) fixed. μ maps triangle centers to triangle centers.

"the" Miquel-Steiner transformation

fixed point / center

$$C = \mathbf{T} \cdot X_2 = 2abc \cdot X_2,$$

 $\mu = \text{composition of isogonal conjugation (after)}$ central similarity with center X_2 (centroid of Δ) with scaling factor -2 $\mu(\xi, \eta, \zeta) = \iota \left(\underbrace{\begin{pmatrix} 0 & b^2c & bc^2 \\ a^2c & 0 & a^2c \\ a^2b & ab^2 & 0 \end{pmatrix}}_{=:\mathbf{T}} \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} \right),$ where $\iota(\xi', \eta', \zeta') = {\xi'}^{-1} : {\eta'}^{-1} : {\zeta'}^{-1}$

fixed line / axis = ideal line
$$\omega$$

 $\mathbf{T} \cdot \begin{pmatrix} b & c \\ -a & 0 \\ 0 & -a \end{pmatrix} = -abc \begin{pmatrix} b & c \\ -a & 0 \\ 0 & -a \end{pmatrix},$
 $\underbrace{\operatorname{ker}(\ldots) = \omega}_{\operatorname{ker}(\ldots) = \omega}$

characteristic crossratio = $Cr(C, [C, P] \cap \omega, P, \mathbf{T} \cdot P) = -2 \quad \forall P \neq C, P \notin \omega$

Cremona transformation: An inverse must exist!

inverse μ^{-1} $b_3 \quad \xi:\eta:\zeta\mapsto bc(-a\eta\zeta+b\zeta\xi+c\xi\eta):\ldots:\ldots$ μ^{-1} 's exceptional triangle = Δ μ^{-1} 's leaves X_4 (orthocenter of Δ) fixed. base conics (coordinate functions of μ^{-1}) = hyperbolae h_i with centers H_i and $H_1H_2H_3 =: \Delta_H \stackrel{X_{25}}{\overline{\Lambda}} \Delta$ X_{25} = homothetic center of Δ_o and Δ_t action of μ and $\mu^{-1} - \mathbf{I}$

antiorthic axis \mathcal{L}_1 Euler line \mathcal{L}_{647} B_a $\mu(\mathcal{L}_1)$ C A_a A_a $A_$

 $\mu^{-1}(\mathcal{L}_1)$ is centered at X_7 (Gergonne point of Δ)

 $\mu(\mathcal{L}_1)$ carries (among others) X_{100} (anticomplement of the Feuerbach point)

 $\mu^{-1}(\mathcal{L}_{647})$ and $\mu(\mathcal{L}_{647})$: equilateral hyperbolae and parallel asymptotes with centers X_{110} (focus of the Kiepert parabola) and X_{125} (center of the Jeřabek hyperbola)

 A_a

 $\mu(\mathcal{L}_{647})$

 $\mu^{-1}(\mathcal{L}_{647})$

action of μ and $\mu^{-1} - \Pi$

circumcircle $u \mapsto \text{quartic } \mu(u)$ with double points at A, B, Cand tangents through X_3 and X_6

µ(u) becomes cubic
 if Δ becomes right
 The one (and only) double point becomes a cusp if Δ becomes equilateral (and right).
 Line opposite to ⊥ splits off.

action of μ and $\mu^{-1} - \mathbf{III}$

 \leftarrow incircles and their $\mu\text{-}$ and $\mu^{-1}\text{-}\text{images}$ \downarrow nine-point circles and their $\mu\text{-}$ and $\mu^{-1}\text{-}$ images

action of μ and $\mu^{-1} - IV$

 $\mu(\mathcal{X}) = \mathcal{K}_{379} \| 58 \| 6 | 4 |$

81 1169 14534 2298 572 19607

action of μ and $\mu^{-1}-\mathbf{V}$

known cubics with		known c	known cubics whose	
known cubic images		images	images are only determined by triangle centers	
		\mathcal{K}_i	centers X_j on $\mu(\mathcal{K}_i)$	
Ki	$\mu(\mathcal{K}_i) = \mathcal{K}_i$	45	2, 4, 6, 54, 275, 1993, 8882, 34756	
7	2	92		
8	273 361 644 233	133	69, 6223, 21279, 52365	
80		144	6, 54, 74	
141		146	20, 69, 11442	
170		154	69, 962, 3434, 3430, 52366	
254	370	240	69, 316, 512, 3448, 14360, 53365	
204	151 151	242	6, 110, 1174, 1379, 1380, 8115, 8116, 15460, 15461	
255	404	279	2, 4, 6, 30, 323, 2986, 5504, 10419, 14910, 15262	
555 440	300	347	6,	
449	447	371	6	
611	1172	380	4, 6, 251, 1976, 2065	
617	28	455	1, 6, 35, 37, 57, 1126, 1171, 1255, 21353, 33635	
753	73	548	76. 2896	
1000	354	605	6, 58, 63, 81, 284, 2287, 7123, 40403	
1002	135	659	6 32 83 251 51951	
1037	1013	860	6 15 16 74 40384	
1053a,b	1145a,b	985	6 58 81 201 1022 2311 7132 24479 38810 38813	
1131	1134	1004	6 163 2149	
		1072	1 6 56 57 266 280 17/3	
		1010	1, 0, 30, 37, 200, 203, 1743	

This is by no means the end of the story!

$$I \mapsto \mu(I) \dots \text{quartic}$$

$$x : y : z \mapsto ayz(bx - ay)(cx - az) : \dots : \dots$$

$$C \mapsto \mu(I)$$

$$B$$

$$\leftarrow \text{ replace } \Delta_{C}(P) = A'B'C' \text{ by}$$

$$\Delta_{\delta} = A''B''C'' \text{ with } \operatorname{cr}(A, B, C', C'') = \delta, \dots$$

$$M^{\delta} = k_{AB''C''} \cap k_{A''BC''} \cap k_{A''B''C}$$

$$P \mapsto M^{\delta} \dots \text{ sextic}$$

some references

[BENZ]	W. Benz: Vorlesungen über Geometrie der Algebren. Springer-Verlag, Berlin-Heidelberg-New York, 1973.			
[CAS]	J. Casey: A Sequel to the First Six Books of the Elements of Euclid. Containing an Easy Introduction to Modern Geometry with Numerous Examples. 5 th ed., rev. enl., Hodges, Figgis, & Co., Dublin, 1888.			
[FLA]	K. Fladt: <i>Die Umkehrung der ebenen quadratischen Cremonatransformationen.</i> J. reine ang. Math. 170 (1934), 64–68.			
[FOR]	H.G. Forder: <i>Geometry</i> . Hutchinson University Library, London, 1960.			
[GAR]	García Capitán, Francisco Javier: <i>Locus of centroids of similar inscribed triangles.</i> Forum Geom. 16 (2016), 257–267.			
[GIB]	B. Gibert: Catalogue of Triangle Cubics. Available at: http://bernard-gibert.fr/index.html			
[KIA]	C. Kimberling: <i>Triangle Centers and Central Triangles.</i> (Congressus Numerantium Vol. 129) Utilitas Mathematica Publishing, Winnipeg, 1998.			
[KIB]	C. Kimberling: <i>Encyclopedia of Tri angle Centers.</i> Available at: http://faculty.evansville.edu/ck6/encyclopedia/etc.html Last accessed: 5/2023.			
[MIQ]	A. Miquel: <i>Mémoire de Géométrie.</i> Journal de Mathématiques Pures et Appliquées 1 (1838), 485–487.			
[MK]	E. Müller, J. Krames: <i>Vorlesungen über Darstellende Geometrie II: Die Zyklographie.</i> Deuticke, Wien-Leipzig, 1929.			
[ODE]	B. Odehnal. A rarity in geometry: a septic curve. KoG 25/25 (2021), 25–39.			
[RL]	M. Rolínek, L.A. Dung: <i>The Miquel points, Pseudocircumcenter, and Euler-Poncelet-Point of</i> a Complete Quadrilateral. Forum Geom. 14 (2014), 145–153.			
[SGO]	H. Stachel, G. Glaeser, B. Odehnal: The Universe of Conics. From the ancient Greeks to			

21st century developments. Springer, Berlin, 2016.

Thank You For Your Attention!