# Geometrische Erzeugung linearer Geradenabbildungen

Boris Odehnal

#### schon bekannt

lineare Geradenabbilungen von Eckhart & Rehbock, Blaschke & Grünwald, sphärisch-kinematische Abbildung

#### damals

Linearität der Geradenbbildung

=

Linearität der Abbildungsgleichungen in den Plücker-Koordinaten

#### Lineare Abbildung

(im Sinne der darst. Geometrie)

Projektion  $\pi$ :  $\mathbb{P}^n \to \mathbb{P}^m$  (m < n) +

Kollineation  $\mathbb{P}^m \to \mathbb{P}^m$ 

Sfrag replacements



Punkte  $\xrightarrow{\pi}$  Punkte ker  $\pi = Z$  ..... Zentrum, dim Z = n - m - 1 $\mathbb{P}^m$  ..... Bildraum  $X \mapsto X' = (X \lor Z) \cap \mathbb{P}^m$ 

## Lineare Geradenabbildung

(im Sinne von Brauner) Projektion  $G_k^n \to \mathbb{P}^m \ (m < \binom{n+1}{k+1} - 1)$ + Kollineation  $\mathbb{P}^m \to \mathbb{P}^m$ 

im folgenden: n = 3, k = 1 und m = 3, 2: lineare Geradenabbildungen in  $\mathbb{P}^3$ ,  $\mathbb{P}^2$ 

#### Ziel

geometrische Erzeugung linearer Geradenabbildungen

 $\mathcal{L} 
ightarrow \mathbb{P}^m \ (m = 3, 2)$ 

ohne in den  $\mathbb{P}^5$ auszuweichen

#### Konzept

Übersetzen der Operationen im  $\mathbb{P}^5$  und auf der  $M_2^4$  in Operationen in der Geradenmenge des  $\mathbb{P}^3$ 



| Z                                          | Komplexbüschel (Netz) |
|--------------------------------------------|-----------------------|
| $\xi = Z \lor X  \dots  \dots$             | ringartige Quadrik    |
| $X' = \xi \cap \mathbb{P}^3  \dots  \dots$ | Netzprojektion        |

## bis jetzt

Abbildung der Geraden des  $\mathbb{P}^3$  auf den dreidimensionalen projektiven Raum der Kegelschnitte durch zwei feste Punkte

#### Rezept

lineare Geradenabbildung als Zusammensetzung von:

- 1. Netzprojektion (nicht linear)
- 2. stereographische Projektion (nicht linear)
- 3. Polarität oder Nullpolarität (linear)



linearer Geradenabbildungen in den  $\mathbb{P}^3$ 

Typ des von Z bestimmten Komplexbüschels =

Typ der linearen Geradenabbildung



#### 1. Der elliptische Typ

(lineare Abbildung)

| Zentrum $Z = (u : v : 0 : u : v : 0)$                                         |
|-------------------------------------------------------------------------------|
| Bildraum $\hat{Z}$ : $x_1 + x_4 = x_2 + x_5 = 0$                              |
| Abbildungsgleichungen                                                         |
| $\ldots \ldots \ldots \ldots G \mapsto (g_1 - g_4 : g_2 - g_5 : 2g_3 : 2g_6)$ |
| Umriß von $M_2^4$ $U: x_1^2 + x_2^2 - x_3 x_6 = 0$                            |

#### (lineare Geradenabbildung)

Netzriss von G .....  $g_6x_0^2 - (g_2 - g_5)x_0x_1 + (g_1 - g_4)x_0x_2 + g_3(x_1^2 + x_2^2) = x_3 = 0$ stereographischer Riss in ....  $g_6x_0 - (g_2 - g_5)x_1 + (g_1 - g_4)x_2 + g_3x_3 = 0$ Pol bezüglich U ......  $(2g_6 : g_5 - g_2 : g_1 - g_4 : 2g_3)$ 

#### 1. Der elliptische Typ

Projektion mit elliptischem Netz stereographische Projektion auf eine ovale Quadrik U



#### Eine Hopf-Abbildung

als lineare Geradenabbildung

Netzprojektion  $\nu$ :  $\mathbb{P}^{3} \to \mathbb{E}^{2}$   $(x_{0} : x_{1} : x_{2} : x_{3}) \mapsto$   $(x_{0}^{2} + x_{3}^{2} : x_{0}x_{1} + x_{2}x_{3} : x_{0}x_{2} - x_{1}x_{3} : 0)$ stereographische Projektion  $\sigma$ :  $\mathbb{E}^{2} \to S^{2}$   $(x_{0} : x_{1} : x_{2} : 0) \mapsto$   $(x_{0}^{2} + x_{1}^{2} + x_{2}^{2} : 2x_{0}x_{1} : 2x_{0}x_{2} : x_{0}^{2} + x_{1}^{2} + x_{2}^{2})$ Hopf-Abbildung  $\phi = \nu\sigma$ :  $\mathbb{P}^{3} \to S^{2}$   $(x_{0} : x_{1} : x_{2} : x_{3}) \mapsto$   $(x_{0}^{2} + x_{1}^{2} + x_{2}^{2} + x_{3}^{2} : 2(x_{0}x_{1} + x_{2}x_{3}) : 2(x_{0}x_{2} - x_{1}x_{3}) :$   $-x_{0}^{2} + x_{1}^{2} + x_{2}^{2} + x_{3}^{2})$ Bild einer Geraden

 $G \mapsto (g_3 + g_6 : g_2 - g_5 : g_4 - g_1 : g_6 - g_3)$ 

## 2. Der hyperbolische Typ

(lineare Abbildung)

| Zentrum $Z = (0:0:u:0:0:v)$                                             |
|-------------------------------------------------------------------------|
| Bildraum $\widehat{Z}$ : $x_3 = x_6 = 0$                                |
| Abbildungsgleichungen $\ldots \ldots G \mapsto (g_1 : g_2 : g_4 : g_5)$ |
| Umriß von $M_2^4$                                                       |

## (lineare Geradenabbildung)

| Netzriss von $G \ldots g_4 x_1^2 + g_5 x_1 x_2 + g_2 x_1 x_3 - g_1 x_2 x_3 =$   |
|---------------------------------------------------------------------------------|
| $x_0 - x_1 = 0$                                                                 |
| stereographischer Riss in                                                       |
| $\dots \dots \dots \dots \dots \dots g_1 x_0 + g_4 x_1 + g_5 x_2 + g_2 x_3 = 0$ |
| Pol bezüglich $U$                                                               |

#### 2. Der hyperbolische Typ

Projektion mit hyperbolischem Netz stereographische Projektion auf eine ringartige Quadrik U Polarität an U



#### 3. Der parabolische Typ

(lineare Abbildung)

| Zentrum $Z = (0 : u : 0 : v : u : 0)$                                  |
|------------------------------------------------------------------------|
| Polarraum $x_1 = x_2 + x_5 = 0$                                        |
| Bildraum $\widehat{Z}$ : $x_4 = x_5 = 0$                               |
| Abbildungsgleichungen $\ldots G \mapsto (g_1 : g_2 - g_5 : g_3 : g_6)$ |
| Umriß von $M_2^4$                                                      |

#### (lineare Geradenabbildung)

| Netzriss von $G$                                                |
|-----------------------------------------------------------------|
| $g_6x_0^2 + (g_5 - g_2)x_0x_1 + g_1x_0x_2 + g_3x_1^2 = x_3 = 0$ |
| stereographischer Riss in                                       |
| $\dots \dots g_6 x_0 + (g_5 - g_2) x_1 + g_1 x_2 + g_3 x_3 = 0$ |

#### 3. Der parabolische Typ

Projektion mit parabolischem Netz stereographische Projektion auf einen quadratischen Kegel U

Polarität oder Nullpolarität



## 4. Der singuläre Typ

## (lineare Abbildung)

| Zentrum                                                    |
|------------------------------------------------------------|
| Polarraum $x_2 + x_3 = 0$                                  |
| Bildraum $\widehat{Z}$ : $x_5 = x_6 = 0$                   |
| Abbildungsgleichungen $G\lambda = (g_1 : g_2 : g_3 : g_4)$ |
| Umriß von $M_2^4U: x_1 = x_2 = x_3 = 0 \cup x_2 = x_3 =$   |
| $x_4 = 0$                                                  |
| (lineare Geradenabbildung)                                 |



Die geometrische Realisierung steht noch aus.

Alle surjektiven linearen Geradenabbildungen in den  $\mathbb{P}^3$  (mit Ausnahme des singulären Typs) können als Zusammensetzung einer Netzprojektion mit einer stereographischen Projektion und einer Polarität erzeugt werden. Beweis: (Rekonstruktion der Urbildgeraden )

Je nach Typ der Abbildung:

∃ ovale, ringartige Quadrik oder quadratischer Kegel

U ......Umriß von  $M_2^4$ 

Polarität (an U) .....  $X \mapsto \xi$ 

 $\xi \cap U = k$  . . . Kegelschnitt oder Punkt von U

Alle Kegelschnitte haben zwei Punkte  $P_1$ ,  $P_2$ oder ein LE (P, p) gemein.

Netzachsen  $A_i$  durch  $P_i$  wählen; Urbilder der Kegelschnitte sind alle Geraden des ergänzenden Regulus der Quadrik durch  $A_i$  und  $k\sigma$ .

# Geometrische Realisierung der lin. Geradenabb. in $\mathbb{P}^2$

## 1. Variante

Netzprojektion + Polbildung

oder

Netzprojektion + Polarenbildung + Korrelation

## 2. Variante

lineare Geradenabbildung in  $\mathbb{P}^3$  + Projektion  $\mathbb{P}^3 \to \mathbb{P}^2$ 

#### 1. Der elliptische Typ

Projektion mit elliptischem Netz Polbildung bezüglich u



#### 2. Der hyperbolische Typ

Projektion mit hyperbolischem Netz Polbildung bezüglich u



#### 3. Der parabolische Typ

Projektion mit parabolischem Netz Polarenbildung bezüglich U



## Beziehung zu bekannten linearen Geradenabbildungen

Zentrum Z 2-dimensional,

Unterscheidung hinsichtlich der Lage von Z bezüglich  $M_2^{\rm 4}$  liefert

#### 7 Typen:

1.  $Z \cap M_2^4$  ..... reell einteiliger Kegelschnitt 2.  $Z \cap M_2^4$  ..... nullteiliger Kegelschnitt 3.  $Z \cap M_2^4 = \{e, f\}$  ..... reelles Geradenpaar 4.  $Z \cap M_2^4 = \{e, \overline{e}\}$  ..... k. k. Geradenpaar 5.  $Z \cap M_2^4 = e$  ..... einer reelle Gerade 6.  $Z \subset M_2^4$  ..... Ebene 1. Art 7.  $Z \subset M_2^4$  ..... Ebene 2. Art (Klassifikation schon bei Brauner) In welchen dieser 2-dimensionalen Zentren  $Z_i$ finden wir 1-dimensionale Zentren  $Z_{(e)}$ ,  $Z_{(h)}$ ,  $Z_{(p)}$ ,  $Z_{(s)}$ ?

| $Z_i$   | enthält                     |
|---------|-----------------------------|
| $Z_1$   | $Z_{(h)}, Z_{(e)}, Z_{(p)}$ |
| $Z_2$   | $Z_{(e)}$                   |
| $Z_3$   | $Z_{(h)}, Z_{(p)}, Z_{(s)}$ |
| $Z_{4}$ | $Z_{(e)}, Z_{(p)}$          |
| $Z_5$   | $Z_{(p)}, Z_{(s)}$          |
| $Z_6$   | $Z_{(s)}$                   |
| $Z_7$   | $Z_{(s)}$                   |

Anders gefragt: Welche Sekanten, Passanten und Tangenten (von  $M_2^4$ ) und Geraden  $\subset M_2^4$ können in den Ebenen  $Z_i$  gefunden werden? Aus den vier Typen (e), (h), (p) und (s) lin. Gerabb. in  $\mathbb{P}^3$  erhält man durch Projektion  $\mathbb{P}^3 \to \mathbb{P}^2$  folgende Typen lin. Gerabb. in  $\mathbb{P}^2$ :

Oder: Welche Lage können Ebenen durch Sekanten, Passanten, Tangenten und durch Erzeugende von  $M_2^4$  einnehmen?

#### Geradenabbildung von Blaschke und Grünwald

Paarabbildung  $(\phi^l, \phi^r)$   $G\phi^l = (g_3 : -g_2 - g_4 : g_1 - g_5)$   $G\phi^r = (g_3 : g_2 - g_4 : -g_1 - g_5)$ Ausnahmeräume  $Z^l, Z^r =$  zwei Ebenen mit gemeinsamem Punkt

 $\phi^l$ ,  $\phi^r$  sind vom Braunerschen Typ (6.) bzw. (7.)

folglich: Blaschke-Grünwald-Abbildung nur als Zusammensetzung des Typs (s) lin. Gerabb.

+ Projektion realisierbar.

#### sphärisch-kinematische Abbildung

## Paarabbildung ( $\phi^l, \phi^r$ )

Voraussetzung: Plücker-Koordinaten normiert:  $g_1^2 + \ldots g_6^2 = 1$   $G\phi^l = (g_1 - g_4 : g_2 - g_5 : g_3 - g_6)$   $G\phi^r = (g_1 + g_4 : g_2 + g_5 : g_3 + g_6)$ Ausnahmeräume  $Z^l$ ,  $Z^r$  schneiden  $M_2^4$  in den Kleinschen Bildern der Reguli auf

$$x_0^2 + x_1^2 + x_2^2 + x_3^2 = 0.$$

folglich: sphärisch-kinematische Abbildung nur als Zusammensetzung des Typs (e) lin. Gerabb.+ Projektion realisierbar.

oder: Hopf-Abbildung + Projektion aus (1 : 0 : 0 : 0) in  $x_0 = 0$ 





