
Slovak – Czech Conference on Geometry and Graphics, September 11 – 14, 2017, Vršatec, Slovakia

Hermite interpolation of ruled and channel surfaces

Boris Odehnal

University of Applied Arts Vienna



rough sketch of the talk

ruled surfaces / channel surfaces | What is done so far?

line and sphere geometry | basic facts, Plücker’s and Lie’s quadric

Bézier curves within quadrics | why Bézier curves?

techniques and aims | low degree interpolants

computations, algorithms, results | and some examples

discussion | problems



What is done so far?

for ruled surfaces - for channel surfaces - numerically - algebraically



ruled surfaces / channel surfaces – What is done so far?

(1) interpolatory (and approximating) subdivision schemes for ruled surfaces [11]

(2) interpolatory (and approximating) subdivision schemes for channel surfaces [12]

advantages: fast, sufficient for computer graphics and animation
disadvantages: no exakt parametrization (although convergent)
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ruled surfaces / channel surfaces – What is done so far?

(3) G1 Hermite interpolation with quadric

bi-arcs = interpolation on Plücker’s quadric

with conic bi-arcs [17]

advantages: simple construction / compu-

tation, exact parametrization

disadvantages: restricted to degree 2, no

torsal / inflection rulings, lines have to be

inserted . . .

(4) exact rational parametrization of

minimal degree of channel surfaces

advantages: rational low degree para-

metrizations, exact

disadvantages: complicated compu-

tation, real time? [7,8,14]

(5) . . . and many algorithms for developable (ruled) surfaces . . . [15,16,18]
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Why interpolation with higher order continuity?

Isophotes (especially shadow boundaries) and reflection lines show a Gk−1 transition

at the Gk join of two surfaces.

Gliding or rolling along / on such surfaces becomes more convenient if the joins are of

higher order continuity.
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line geometry, sphere geometry

point models - Plücker’s quadric - Lie’s quadric - dictionaries



line geometry

[4,5,10,19,21,22]

L = [P,Q] . . . line L spanned by points P 6= Q in some three-dimensional space

p,q . . . coordinate vectors of P,Q

l = q−p, l = p×q . . . direction and momentum vector of L

L = (l, l) . . . Plücker coordinates =⇒ interpretation as coordinates of points in P5(F)

(arbitrary commutative field F, charF 6= 2)

Plücker coordinates of L fulfill

M42 :
1
2
ΩL(L, L) = 〈l, l〉 = 0

• ΩL(·, ·) : F
6 × F6 → F . . . polar form of the regular ruled quadric M42 (of index 2)

• ΩL(L,M) = 0⇐⇒ L and M are coplanar (intersecting).

• M42 and the ambient space P5 serve as a point model for the set of lines in P3(F)

(and ofcourse in R3), M42 . . . Plücker’s quadric, Klein’s quadric, Grassmannian G3,1
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line geometry - some corresponding objects

in M42 in terms of lines in P3(F)

point (straight) line

line ⊂ M42 pencil of lines

plane ⊂ M42 star of lines / ruled plane

2-, 3-dim. submanifold congruence, complex of lines
1-dim. submanifold (curve) ruled surface

conic ⊂ M42 regulus (quadratic cone, dual conic)⋆⋆

algebraic curve of degree n algebraic ruled surface of degree n

point ∈ P5 \M42 regular linear line complex⋆

line ⊂ P5 \M42 linear congruence of lines⋆

plane ⊂ P5 \M42 regulus⋆

⋆ . . . extended Klein images, actually carriers of 3-, 2-, and 1-dim. manifolds of lines
⋆⋆ . . . only if the conic’s plane is contained in M42
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line geometry - differential geometric properties of ruled surfaces

G0 G1 G2

point P point P + tangent tP point P (+ tangent tP )
+ osculating plane OP

P P P

ruling P surface tangents one regulus of the
along P osculating quadric

Gk Hermite interpolation of ruled surfaces means . . .
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sphere geometry

[1,9,21]

A sphere S in Euclidean three-space R3 can always be given by its equation

(s6 − s4)(x
2 + y2 + z2)− 2(s1x + s2y + s3z) + (s6 + s4) = 0.

center C = 1
s6−s4

(s1, s2, s3), radius R = s5
s6−s4

with s5 chosen such that

L42 : ΩS(S,S) = s
2
1 + s

2
2 + s

2
3 + s

2
4 − s

2
5 − s

2
6 = 0

si are homogeneous =⇒ interpretation in as coordinates of points in P5(R)

• ΩS(·, ·) : R
6 ×R6 → R . . . polar form of the regular ruled quadric L42 (of index 1)

• ΩS(S, T ) = 0⇐⇒ S and T are in oriented contact.

• L42 and the ambient space P5 serve as a point model for the set of spheres in R3

• L42 . . . Lie’s quadric, projectively equivalent to M42 (but not over the reals)
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sphere geometry

in L42 in terms of spheres in R3

point sphere (inluding planes, points, . . . )

line ⊂ L42 pencil of spheres (planes)

There are no planes in L42.

2-, 3-dim. submanifold congruence, complex of spheres
1-dim. submanifold (curve) envelope a channel surface

(incl. pipe surfaces: r = const.)

conic ⊂ L42 one family of spheres
tangent to a Dupin cyclide

algebraic curve of degree n envelope an algebraic channel surface
of degree < n(2n − 1)

point ∈ P5 \ L42 regular linear complex of spheres ⋆

line ⊂ P5 \ L42 linear congruence of spheres⋆

⋆ . . . extended Lie images, actually carriers of 3-, 2-, and 1-dim. manifolds of spheres
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sphere geometry - differential geometric properties of channel surfaces

G0 G1 G2

point P point P + tangent tP point P + tangent tP
+ osculating plane OP

one-parameter families of spheres

C

P

C

P
tP

C

P
tP

OP

sphere P tangent cone at P one family of spheres enveloping
the osculating Dupin cyclide

the respective envelopes

Gk Hermite interpolation with channel surfaces means . . .
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Bézier curves in quadrics

control points - additional constraints - polynomial condition



Bézier curves in quadrics

[3,4,6]

bk . . . (coordinate vectors of) control points Bk ,

k = 0, . . . , n

ϕk =
(n
k

)

(1− t)n−ktk . . . Bernstein polynomials

B(t) =
n
∑

k=0
ϕk bk . . . Bézier curve of degree n

The control points Bk of a Bézier curve B in a quadric Q

are (in general) not in Q, except the endpoints. B0

B1

B2

B3

B

Q

The quadric type and the degree of the Bézier curve have to match:

There are no cubics on oval quadrics!

Ω : Fn+1 × Fn+1 → F . . . symm. bilinear form, F commutative, charF 6= 2

Q : Ω(X,X) = 0 . . . quadric in Pn(F) (regular if its coefficient matrix is)

B ⊂ Q ⇐⇒ B has 2n + 1 common points with Q or

P (t) = Ω(B,B) ≡ 0 ∀t ∈ F

⇐⇒ All 2n + 1 coefficients of P (t) vanish (simultaneously). ⇐⇒ system of 2n + 1

equations (conditions)
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Bézier curves in quadrics - conditions on derivatives

[4,5,19,22]

Independent of Ω, the parametrization B(t) and its derivatives satisfy

d
dtP =

d
dtΩ(B,B) ≡ 0 =⇒ Ω(B,

�

B) ≡ 0,

d2

dt2
P = d

dtΩ(B,
�

B) ≡ 0 =⇒ Ω(
�

B,
�

B) + Ω(B,
��

B) ≡ 0,

d3

dt3
P = . . . =⇒ 3Ω(

�

B,
��

B) + Ω(B,
���

B) ≡ 0,
...

Boundary data D = [P,
�

P ,
��

P ,
���

P , . . .] is always subject to these equations.

Since boundary data fulfills these equations, some conditions resulting from the coef-

ficients of P ≡ 0 are automatically fulfilled!
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Bézier curves in quadrics - why?

Any polynomial / rational parametrization can be rewritten in various bases.

It is just a linear mapping! In the space of polynomials of degree n:

monomial→ Bernstein : upper triangular matrix with non−zero entries
[

(−1)i ·

(

n
k

)

·

(

n − k
i

)]

(

k = 0, . . . , n
i = 0, . . . , n − k

)

The coefficients corresponding to the Bézier representation give the coordinates of

the control points.

Control points are helpful in any design process.

This approach keeps the degrees of the interpolants as low as possible.

The huge variety of solutions makes it possible to add constraints (side conditions).

No further construction that raises the degree and no insertion of lines is needed.
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algorithms

recipe - examples - problems - solutions



algorithms - recipe

1. Gk data D0 = [p,
�

p,
��

p, . . .], D1 = [q,
�

q,
��

q, . . .]

that satisfies the conditions on the derivatives (from ruled/channel surfaces)

2. D0 . . . determines the interpolant B at t = 0,

D1 . . . determines the interpolant B at t = 1

3. the ansatz of the interpolant as a Bézier curve:

B(t) =
n
∑

k=0
ϕk bk with proper n † ց

4. control points chosen such that the Gk properties hold:

b0 = p, b1 = [p,
�

p], b2 = [p,
�

p,
��

p], . . . , bn−2 = [q,
�

q,
��

q], bn−1 = [q,
�

q], bn = p.

5. condition for B ⊂ Q: P (t) = Ω(B,B) ≡ 0 ∀t ∈ [0, 1]

since degB = n ⇐⇒ degP = 2n =⇒ 2n + 1 coefficients ci = 0

=⇒ system of 2n + 1 algebraic equations + side conditions to be solved

6. for torsal ruled surfaces: additionally Ω(
�

B,
�

B) ≡ 0 ∀t ∈ [0, 1]

=⇒ system of 4n algebraic equations + side conditions to be solved † տ
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algorithms - G1

Prescribe G1 data at the ends

D0 = [p,
�

p], D1 = [q,
�

q]

that satisfies the conditions on the derivatives∗

and make the ansatz

B(t) =
3
∑

k=0
ϕk bk

with b0 = p, b3 = q and

b1 = λ1 p+µ1
�

p, b2 = λ2 q+µ2
�

q

(end point interpolation).

B ⊂ Q ⇐⇒ P = Ω(B,B) vanishes totally for the cubic Bézier curve B if, and only if,

2Ω0,2 + 3Ω1,1 = 0, 2Ω1,3 + 3Ω2,2 = 0, Ω0,3 + 9Ω1,2 = 0 (S1).

∗ causes Ω0,0 = Ω0,1 = Ω2,3 = Ω3,3 = 0, Ωi ,j := Ω(bi ,bj) and Ωx,y := Ω(x, y)

=⇒ three equations in four unknowns λi , µi =⇒ one-parameter family of solutions

14



algorithms - G1

Solving (S1) yields

λ1 = −(2Ωṗ,qµ1 + 3Ωq̇,q̇µ
2
2)/(2Ωp,q),

λ2 = −(2Ωp,q̇µ2 + 3Ωṗ,ṗµ
2
1)/(2Ωp,q),

and finally the union of two hyperbolae in

the [µ1, µ2]-plane. =⇒

The totality of solutions to the G1 inter-

polation problem in quadrics with cubics is

the union of two quadratic one-parameter

familes solutions.

µ1

µ2

r
r

r

r

s

s

solutions with
side condition

r : 81Ωṗ,ṗΩq̇,q̇µ
2
1µ
2
2 + 36(Ωp,qΩṗ,q̇ − Ωp,q̇Ωṗ,q)µ1µ2 + 4Ω

2
p,q = 0

Adding a proper side condition s simplifies the search for useful solutions or helps to

avoid unwanted behaviour of solutions.
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algorithms - G1

The unifying treatment - as geometries in quadrics - allows us to apply the technique

to both, ruled and channel surfaces.

The uniform parametrization of the interpolants may get lost on the way back to

three-space.
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algorithms - G2

Prescribe G2 data at the ends

D0 = [p,
�

p,
��

p], D1 = [q,
�

q,
��

q]

that satisfies the conditions on the derivatives∗

and make the ansatz

B(t) =
5
∑

k=0
ϕk bk

with the afore mentioned end point conditions plus

b2=α1 p+β1
�

p+γ1
��

p, b3=α2 p+β2
�

p+γ2
��

p.

B ⊂ Q ⇐⇒ P = Ω(B,B)≡ 0 for the quintic Bézier curve B if, and only if,

4Ω3i−3,3i−1 + 5Ω3i−2,3i−2 = 0, Ω2i−2,2i+1 + 5Ω2i−1,2i = 0,

Ωi−1,i+3 + 10Ωi ,i+2 + 10Ωi+1,i+1 = 0, Ω0,5 + 25Ω1,4 + 100Ω2,3 = 0
(S2).

∗ causes Ω0,0 = Ω0,1 = Ω4,5 = Ω5,5 = 0, seven equations in twelve unknowns

=⇒ 3-dim. variety of solutions of degree ≤ 150, with prescribed weights µi
=⇒ 1-dim. variety of solutions of degree eight.
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algorithms - G2

The system (of algebraic equations) (S2) is solved only numerically in most cases.

bad worse

good

perfect

Ω/P

t

The quality of the numerical solution can be checked by looking at

Ω(B,B) = P (t) : [0, 1]→ R

which is only almost zero over [0, 1] due to numerical inaccuracies.
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algorithms - G2

Good solutions:

show only little variation in the

radius function and have no self

intersections.

Bad solutions:

radius function has zeros in [0, 1] or/and channel

surface looks nice at the ends, but grows into the

wrong direction.

Self intersections and loops can also occur at ruled surfaces. The proper choice of µi
can prevent the surfaces from running into the wrong direction.
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algorithms - G3

Along a (regular, non-torsal, non-inflection, . . . ) ruling R, the asymptotic tangents

of the ruled surface R form a regulus A, i.e., the regulus complementary to the

primary regulus O of the osculating quadric. There are two asymptotic tangents (in

general) which hyper-osculate the ruled surface: They intersect the ruled surface with

multiplicity four (at least). These lines are called flecnodal tangents and touch the ruled

surface at the flecnodes. There exists an analogon for channel surfaces.[4,5,13,19,22]

R

O

R

R

A R

Two ruled surfaces with a G3 join along a (regular, non-torsal, non-inflection, . . . )

ruling share the flecnodes.
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algorithms - G3

We prescribe G3 data at the ends

D0=[p,
�

p,
��

p,
���

p], D0=[p,
�

p,
��

p,
���

p]

that satisies the conditions on the

derivatives⋆ and use the ansatz

B =
7
∑

k=0
ϕk bk with

b0 = p, b1 = [p,
�

p], . . . ,

b7 = q, b6 = [q,
�

q], . . . .

B ⊂ Q ⇐⇒ P = Ω(B,B)≡ 0

Four conditions vanish automatically due to ⋆: Ω00 = Ω01 = Ω67 = Ω77 = 0.

Eleven conditions on 18 variables remain.

=⇒ 6-dimensional manifold of solutions.

Intelligent elimination strategy required!

Drop the degree and the dimension of the

solution manifold by prescribing the right

parameters!
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conclusion

problems - solutions - discussion - suggestions



conclusion - problems - discussion

Interpolation problems for channel surfaces should preferably be treated in the linear

cyclographic model of the geometry of spheres.

=⇒ advantage: simple spline interpolation

disadvantage: yields Gk joins of families of spheres,

but only Gk−1 joins between enveloped channel surfaces

The uniform approach – Bézier curves in arbitrary (regular) quadrics – is applicable to

other non-linear geometries.

=⇒ exact parametrization of interpolating motions

The shape parameters µi or the side conditions should be chosen carefully: Algebraic

curves of sufficiently high degree tend to oscillate or may even have loops. So do ruled

surfaces!
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conclusion - problems - discussion

a bad G2 interpolation with a nasty loop
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Thank You For Your Attention!
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