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Abstract

The article develops in a simple and modern manner the essential geometric
properties of Burmester's focal mechanism with applications to the driving of
double-rocker linkages and the synthesis of Hart's straight-line mechanism.

Zusammenfassung—Uber den Burmesterschen Brennpunktsmechanismus und der
Hartschen Geradfiihrung.

Der Artikel entwickelt in einfacher und moderner Weise die wesentlichen
geometrischen Eigenschaften des Burmesterschen Brennpunktsmechanismus mit
Anwendungen auf den Antrieb von Doppelschwingen und die Synthese der
Hartschen Geradfiihrung.

Pestome—O (o xanbHBIX MexaHH3Max Bypmecrepa u npsmmie Xapra—B. Bynaepiux.

B nacrosmeit paGoTe pa3sBHBAIOTCS MPOCTHIM 00Pa30M CYIIECTBEHHBIE F€OMETPHYECKHAE CBOUCTBA
(oxambHBIX MexaHM3MOB BypMecTepa ¢ NPHMEHEHHEM K ABHKEHHIO OBYXKOPOMEICIIOBAIO MEXaHH3Ma
M CHHTe3y IpsiMiiIa XapTa.

Section 1

LET MPFQN be a plane five-bar linkage with sizes MP= m, PF= D, F_Q=q, éﬁ=n and
MN= d, M and N being fixed. To reduce the freedom f=2 of the mechanism, an additional
condition must be imposed. Such a condition, as introduced by Hart [1] and utilized also by
Darboux [2], Burmester [3], Dixon [4] and others, consists in establishing a certain relation
between the angles at P and Q, for instance

¥MPF=w,  ¥FQN=n—o. (1.1)

To determine the path of F we shall make use of isotropic coordinates z=x+iy,
Z=x—iy derived from cartesian coordinates x, y with origin in M, the x-axis going through
N (Fig. 1). By means of the abbreviations

ei¢=u’ ei|[1=v’ eiw=w (uﬁ:vﬁ:wW:l)’ (12)

¢ and ¥ denoting the angles of the bars MP and NQ with the base line MN, respectively,
the position of F is characterized by
Z=mu— puw, Z=mii— puw (1.3)
and
z—d=nv+quw, Z—d=nv+qdw. (1.4
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Figure 1. Five-bar linkage of Hart.

Eliminating # and v we arrive at the equations
zZ=m*+p*—mp(w+Ww),

(z—d)Z-d)=n’+q*+nq(w+); (1.5)

these express in complex form the cosine theorems for the triangles MFP and NFQ.
Elimination of w+# finally leads to

(mp+ng)zz —mpd(z+2) =mp(n’ +q* —d*)+ nq(m* + p?) (1.6)
or

(z—s)(zZ—s)=r? 1.7
with

_ mpd
mp+nq’
2 _mn’(p’ +4%)+(m* +n?)p’q* + mnpg(m*+n®+ p*+q*> —d?) (1.8)
(mp+ng)’ ' :

This shows that the locus of F'is a circle |z—s| ==r with center S(x=s, y=0) and radius
r (Fig. 1). Thus the condition (1.1) may be realized by adding a link SF fixed in that point S
which divides the segment MN according to

MS : NS=s :(s—d)=mp: —nq. (1.9

Section 2
The relation between the angles ¢ and y is described by the equation

(mu —nv—d)(mii —no—d)=(pu + qv)(pit +gb), (2.1)
derived by elimination of z, Z and w from (1.3) and (1.4). Reducing it to
(mn+ pq)(ud +iiv) + md(u + i) —nd(v+d)=m*+n*—p*—g*+ d* 2.2

we see that it is of the same form as the relation between adjacent angles of a four-bar
linkage.
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Thus it may be tried to connect the systems MP and NQ by a link 4B with joints 4
on MP and B on NQ. Denoting the lengths MA NB, AB with a, b, ¢ respectively, we get
from Fig. 1, starting with 4B=|au—bv—d|=c:

(au—bvo—d)(aii —bo—d)=c? (2.3)
or
ab(uv + iiv) + ad(u + i) — bd(v+t)=a*+ b> — > +d*. 2.4

Comparing the equations (2.2) and (2.4) we find that they define the same relation when

the coefficients differ only by a common factor 4:

ab a. b a’+b*—c*+d?

mn+pqza_;=m2+n2—p2—q2+d2=i' (-3
This leads to

a=J\m, b=Ain, A=a?+b2+d*—A(m*+n®—p*—q*+d?

with A=14(pg/mn). (2.6)

These formulas confirm the possibility, firstly proved in full generality by Darboux [2],
that the condition (1.1) can be realized by means of a coupler AB connecting the links MP
and NQ as shown in Fig. 1.

Section 3

If now, in the mechanism of Fig. 1, the system AB is considered as fixed (instead of
MN), the five-bar linkage BQFPA with sizes Eé=(}.— Dn=pq/m, Q—F=q, FP= D,
PA= (A—1)m=pg/n and AB=cis again subject to an angular condition analogous to (1.1):

¥BOF=w, XFPA=n-w. (3.1)

Utilizing the result of §1, it follows that the joint F can be connected with the bar 4B
by a link FT, where T divides the segment AB in a ratio calculated by analogy to (1.9):

2 2
A :BT=M: —ﬂ=mp: —nq=MS : NS. 3.2

n m
With this step we have arrived at the eight-bar linkage of Fig. 2, known as the “focal
mechanism” of Burmester [3]. It consists of a four-bar linkage MABN, completed by
four additional bars PF, QF, SF, TF. Opposite sides of the quadrangle MABN are divided

by the new joints P, Q and S, T in equal proportions.

M § SETT N
Figure 2. -Focal mechanism of Burmester.




82

Section 4

Conversely it is always possible to complete an arbitrary four-bar linkage MABN to a
focal mechanism, and that in infinitely many ways. The four side-lengths a, b, ¢, d being
given, any value may be chosen for the factor 2, and then the quantities m, n, p, g can be
calculated from the four equations (2.5).

If we consider the quadrangle MABN in one of its possible positions, the question
arises, which points of the plane can be taken for the fourfold joint F. Noticing the similarity
of the triangles MPF~FQB (X MPF= ¥ BQF=w, PM :P—F=§;": OB=m:p), we state
that

X PFM= xFBQ=§. 4.1)
Analogously we find triangles NQF ~ FPA and

¥NFQ= ¥PAF=au. 4.2)
From this it follows (Fig. 2):

XAFM=o—a+p=y, ¥NFB=o+n—f—0=n—). 4.3)

In other words the situation of F is characterized by the property that opposite sides of the
quadrangle MABN subtend angles with sum =, at F if F is on the inside; if F is on the
outside, the sum would be 0 or 27. Generally we can write:

X AFM + ¥ NFB=0 (mod 7). 4.4)

Points with this property can be found at the intersection of pairs of auxiliary circles
passing through M, 4 and N, B respectively, and forming similar figures with the chords
MA and NB (Fig. 3). Any point F constructed in this way determines the angles « and f
at A and B (Fig. 2) and allows the finding of P and Q by means of (4.2) and (4.1). Points
S and T are added analogously.

Figure 3. Focal cubic of a quadrilateral.

Noticing the similarity of the quadrangles MPFS~FQBT and NQFS~FPAT—an
immediate consequence of the similar triangles considered above—it is easy to state that
the quadrangle PSQT is inscribed in a circle, because opposite angles have the sum =n
(Fig. 2).
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Making use again of the complex notation (§1), the angle condition (4.4) for the point
F(z) is expressed by

s e . —B
z z  z—d z—d “3)
or .
2(Z—d)zZ—Z)(z—zp)=Z(z—d)(z—z,)(Z—Zp). (4.6)

This is the equation of the locus f of admissible points F in isotropic coordinates z, Z. As
the highest term z2z? vanishes, f is an algebraic curve of order 3.

From the generation by means of similar circle pencils with base points M, 4 and N, B
it follows that the cubic f passes through M, N, A, B and the points X=MA-NB and
Y=MN-AB. There is a second generation of f, based upon the condition

XMFN + ¥ BFA=0 (mod =) 4.7

and utilizing similar circle pencils with base points M, N and A4, B (dotted circles in Fig. 3).
Animmediate consequence of X MPF= x BQF=w (Fig. 2) is the fact that the four points
P, F, Q and X are situated on a circle. Analogously S, F, T and Y are concyclic too.

Section 5

Consider now the linear system (“‘range”) of all conics inscribed to the quadrilateral
MABN.* A well known theorem of projective geometry, due to Desargues, says that the
pairs of tangents issuing from a point G to all conics of the range form a (quadratic)
involution [5]. This involution contains also the line pairs GM, GB and GN, GA representing
the tangents from G to the degenerate conics (MB) and (NA) of the system.

Applying this theorem to the point Fin Fig. 2, we state by aid of (4.3) that the line pairs
FM, FB and FN, FA form angles with common symmetrals. Therefore the ray involution
in F is a symmetric involution and comprises also the pair of isotropic lines through F
(with directions x : y= +i). This means that F is a focus of one of the conics of the range
(Fig. 3). 2

Thus the curve f'(4.6) may be defined as the locus of the foci of all conics inscribed to
MABN. Therefore f'is called the “focal cubic” of the quadrilateral, and this was also the
reason for the name of “focal mechanism”.

Section 6

A remarkable application of Burmester’s focal mechanism consists in the possibility
of driving a double-rocker linkwork MABN with revolving coupler 4B by means of a crank
SF connected by two bars FP, FQ with the rockers MA, NB. It seems that up till now this
idea was neither realized nor even noticed.

The completion of a given four-bar linkwork of the indicated kind (a+b>c+d, c<d)
may start with the choice of the crank support S on MN. This fixes the ratio p=mp : nq
(1.9). Then the unknown quantities m,  and p, ¢ can be calculated from (2.5); this program
requires only the solution of quadratic equations. The crank radius r is finally determined
by the second formula (1.8).

* The term “inscribed” is to be understood in the sense of projective geometry: the range comprises
all conics touching the unlimited lines MA, AB, BN and NM.
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Let us consider in detail the symmetric case a=b, p=1 (Fig. 4). The quantities m=n
and p=gq are determined, according to (2.5), by

m?—am+p*=0, 2am?*—(2a* —c*+d*)m—2ap*+ad*=0. (6.1)

Figure 4. Crank driving of a symmetric double rocker linkwork.

Introducing the distances 4y, h, of base MN and coupler AB in parallel positions, given by
hi=a?—}d—c)?, h2=a?—3d+c)?, (6.2)
the solutions may be written in the form

4a2—-02+d2—4h1hz’ p=(C+d)h1—(c_d)h2, r=h1—h2. (63)
8a 4a 2

A graphic solution may proceed as follows: the location of the point S in the middle of
MNinduces the position of T by reason of (3.2) to be in the middle of AB. Considering now the
symmetric form of the quadrilateral MABN in Fig. 4, the circle SPTQ mentioned in §4 is
determined by its diameter ST and cuts the sides M4 and NB in P and Q, respectively.
The angles @ and n—w at P and Q being equal because of the symmetry, we have
w=n—w=n/2. Thus the perpendiculars PFLMA and QFLNB can be drawn and meet
on the axis of symmetry in F. Another possibility is based upon (4.3): the angles y and m—
being equal to 7/2, F may be found at the intersection of the two auxiliary circles having
diameters MA and NB. The diameter 2r=2-SF of the crank circle is got in the simplest
way as the distance between the two coupler positions parallel to the base MN; this follows
immediately from the invariance of the length FT (Fig. 4).

Fig. 4 illustrates the special example a=b=35, c=2, d=4 of a Chebyshev linkwork for
approximate straight-line motion realized by the coupler curve of the point 7'[6]. Formulas
(6.3) give with h; =2,/6 and h,=4:

m=n=%7—-2,/6)~0-8404;  p=g=4(2+3/6)~1:8697;
r=./6—2~0-4495. (6.4)

The author’s assistant Fuhs found this mechanism by pure intuition during the design of a
demonstration model as shown in Fig. 5 [7].



Figure 5. Demonstration model of Chebyshev’'s approximate straight-line motion.
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Figure 7. Demonstration model of Hart's straight-line linkwork.
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Section 7

The exact straight-line linkwork of Hart [1] is nothing other than the special case of
Burmester’s focal mechanism inw hich r=o00. The corresponding condition which follows is
from (1.8) is

mp+nqg=0, ¥ (7.1)
and so we put

p=kKn, q=—xm. (7.2)
From (2.6) we get

A=1-—x? (7:3)
and with this value

a=(1-x»m, b=(1-x*»n, c=xd. (7.9

These formulas allow one in a simple way to derive straight-line mechanisms with
rational (or integer) sizes.* We have only to start with rational values for m, n, d and .

The straight line described by the point F is given by (1.6)—with vanishing term zz—
and therefore has the equation

R T S )
T p ey (7.5)
2k 2K d
With S the point T also becomes a point at infinity. This means that, fixing the bar 4B,
Hart’s six-bar linkage moves the joint F along a straight line perpendicular to 4B.

If m=p and x=0, the link PF is performing an elliptic motion. The two conditions
require

m=xn, d=1—-x*n (7.6)

and induce a=c and b=d. Thus MABN is a kite quadrangle.
Figures 6 and 7 illustrate the special example n=8, k=%. The other quantities,
calculated by means of (7.6), (7.2) and (7.4), are:

m=p=4, "b=d=6, q=-4, a=c=3. (7.7

The demonstration model, constructed again by Fuhs [7], shows besides the straight
path of F also the ellipse described by the midpoint of PF.

.y

Figure 6. Hart’'s six-bar linkage for exact straight-line motion.

* Negative signs, as in (7.2) at g, cause certain modifications of the meaning of the angle condition

(1.1).
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