DEMONSTRATIONSMODELLE ZUM KINEMATIK-UNTERRICHT

W. Wunderlich*
(Received 5 March 1968)

Zusammenfassung-Kurze Beschreibung eines am II. Institut für Geometrie der Technischen Hochschule Wien zur Unterstützung des Kinematik-Unterrichts entwickelten Schaukastens mit beweglichen Getriebemodellen.

Die Kinematik oder Bewegungslehre liefert die theoretischen Grundlagen für die Analyse und Synthese aller Mechanismen. Eine Einführung in diese wichtige Disziplin, welche die Voraussetzung für die zahlreichen Anwendungen der praktischen Getriebelehre bildet, wird für die Studierenden des Maschinenbaus an der Technischen Hochschule Wien seit langem in Verbindung mit den Vorlesungen und Übungen zur Darstellenden Geometrie geboten. Mit Rücksicht darauf, daß die Teilnehmer an diesen Lehrveranstaltungen dem ersten Jahrgang angehören, ist hier das Bedürfnis nach instruktivem Anschauungsmaterial besonders dringend.

Angeregt durch Eindrücke, die beim Besuch der Technischen Universitäten in Berlin und Dresden empfangen wurden, wo die Pflege der Kinematik auf eine alte, von F. Reuleaux und L. Burmester begründete Tradition zurückblicken kann, reifte der Plan, zur Unterstützung des Unterrichtes einen Schaukasten mit einer Anzahl von typischen Getriebemodellen zu schaffen. Im Gegensatz zu den Vorbildern in Berlin und Dresden sollten die Modelle jedoch einzeln in Betrieb zu setzen sein, um die Aufmerksamkeit zu konzentrieren.

In Zusammenarbeit mit den Wiener Schwachstromwerken, welche die Herstellung in vorbildlicher und sehr entgegenkommender Weise übernahmen, und unterstützt von meinem bewährten Oberassistenten W. Fuhs, der die Detailplanung der einzelnen Modelle durchführte, entstand so der Schaukasten Abb. 1. Er ist seit einem Jahr im Zeichensaal des II. Instituts für Geometrie aufgestellt und steht dort den Hörern während der Übungsstunden zur Verfügung.

Der in Abb. 1 abgebildete, aus Stahlblech gefertigte Oberteil des Schrankes hat die Abmessungen $173 \times 120 \times 30 \mathrm{~cm}$. Er ruht auf einem etwas vorspringenden, 70 cm hohen Sockel aus Holz, der zur Aufbewahrung überzähliger Modelle dient. Der Oberteil weist 20 Fächer zur Aufnahme von ebensovielen Einzelmodellen auf. Diese quaderförmigen Elemente mit den Abmessungen $25 \times 25 \times 17,5 \mathrm{~cm}$ sind einfach einzuschieben und werden nach sanftem Druck durch eine Schnappvorrichtung festgehalten. Nochmaliger Andruck löst den Schnappverschluß wieder, sodaß ein Austausch der Einschubelemente auf die einfachste Weise möglich ist. Eine zentrale, von der rechten Schrankseite aus zugängliche mechanische Verriegelung verhindert eine unbefugte Entnahme.

Jedes Einschubelement enthält im vorderen Drittel, durch Plexiglas abgedeckt, das Getriebemodell. Der rückwärtige Teil birgt einen Wechselstrom-Synchronmotor für 220 V Netzspannung zum Antrieb des Modells. Der Motor wird durch Betätigung der

[^0]entsprechenden Drucktaste am rechten Rand des Schrankes in Betrieb gesetzt. Ein Zeitrelais schaltet je nach der eingestellten Laufzeit, die zwischen 1 und 50 sek variiert werden kann, später wieder ab. Die elektrische Einrichtung sorgt dafür, daß jeweils nur ein einziges Modell in Bewegung ist und auch die gleichzeitige Betätigung mehrerer Tasten wirkungslos bleibt. Ein mittels eines Sicherheitsschlüssels zu bedienender Hauptschalter an der rechten Seitenwand gestattet es, den Modellschrank nur zu gewünschten Zeiten betriebsbereit zu halten, was durch eine Signallampe angezeigt wird.

Jeder einzelne Einschub weist auf der Rückseite zwei Steckerstifte auf, die beim Einsetzen in das Schrankfach den elektrischen Kontakt herstellen, überdies aber auch die Verwendung des Modellelementes an beliebiger Stelle, etwa im Hörsaal, erlauben. Passende Tragtaschen für den Transport besitzen auf der Rückseite eine entsprechende Öffnung, während die Vorderseite abnehmbar ist, um die Sicht freizugeben.

Alle Modelle wurden ebenfalls in den Werkstätten der Wiener Schwachstromwerke (1031 Wien, Apostelgasse 12) mit musterhafter Präzision angefertigt. Die beweglichen Getriebeglieder bestehen aus bunt eloxiertem Leichtmetall, wobei die Farbe auf die Rolle des betreffenden Gliedes hinweist. Die Gelenke sind mit einer Dauerschmierung versehen. Wichtige Bahnkurven wurden punktiert hervorgehoben.

Die zwanzig gegenwärtig vorhandenen Getriebemodelle betreffen-in der aus Abb. 1 ersichtlichen Reihenfolge-folgende Gegenstände:

1. Ellipsenbewegung, erzeugt durch Rollung eines Zahnrades in einem doppelt so großen (Kardan-Kreispaar). Zwei Umfangspunkte des Rollkreises wandern auf zwei orthogonalen Geraden (stehende Kreuzschleife), ein allgemeiner Punkt beschreibt eine Ellipse.
2. Ellipsenbewegung, erzeugt durch drei Zahnräder mit Außenverzahnung. Vier Punkte auf dem Umfang des (nicht materialisierten) Gangpolkreises laufen auf vier Durchmessern des Rastpolkreises.
3. Gelenkparallelogramm mit kreisförmiger Koppelkurve (Parallelkurbelgetriebe).
4. Gelenkiges Antiparallelogramm mit elliptischen Polkurven und einer gespitzten Koppelkurve (bizirkulare Quartik).
5. Gelenkdeltoid (Galloway-Getriebe für ungleichförmige Übersetzung 1:2).
6. Symmetrisches Gelenkviereck mit durch einen Flachpunkt ausgezeichneter Koppelkurve (angenäherte Geradführung von Roberts).
7. Dreifache Erzeugung einer Koppelkurve (Satz von Roberts).
8. Antrieb einer Doppelschwinge mittels eines Burmesterschen Brennpunktsmechanismus (angenäherte Geradführung nach Tschebyschew; $a: b: c: d=-2: 1: 0: 4$, vgl. [1]).
9. Erzeugung der gleichen Koppelkurve mittels einer nach Roberts abgeleiteten Kurbelschwinge.
10. Geschlossene angenäherte Geradführung nach Tschebyschew

$$
\left(a: b: c: r=5,025: 1: 0,990: 7,213 ; t^{2}=1 / 200, \text { vgl. [1] }\right)
$$

11. Gelenkviereck mit zwei ähnlichen Koppelkurven (angenäherte Geradführung von Watt bzw. Evans).
12. Exakte Geradführung nach Hart und Darboux mittels eines speziellen Sechsstabgetriebes von Stephenson. Ein Glied vollführt eine Ellipsenbewegung und ermöglicht die Erzeugung von Ellipsen durch ein Gelenksystem.
13. Rastgetriebe, abgeleitet von einer symmetrischen Koppelkurve durch Materialisierung des Krümmungsradius in einem Scheitel.

Abb. 1
14. Zentrisches Schubkurbelgetriebe mit Pleuelkurve.
15. Zentrische Kurbelschleife mit einer Bahnkurve (Kreiskonchoide 6. Ordnung).
16. Planetenbewegung mit dem Geschwindigkeitsverhältnis $\omega_{1}: \omega_{2}=1: 3$ und drei Bahnkurven (verschlungene, gespitzte und gestreckte Epitrochoide 6. Ordnung; vgl. [2]).
17. Planetenbewegung mit dem Geschwindigkeitsverhältnis $\omega_{1}: \omega_{2}=-1: 3$ und drei Bahnkurven (verschlungene, gespitzte und gestreckte Hypotrochoide 6. Ordnung; vgl. [2]).
18. Planetengetriebe $\omega_{1}: \omega_{2}=-2: 1$ mit einer dreispitzigen Hypozykloide von Steiner, erzeugt als gemeinsame Bahn zweier Punkte und als Einhüllende eines Rollkreisdurchmessers.
19. Approximation eines Quadrats durch eine Radlinie 3. Stufe
$\left(\omega_{1}: \omega_{2}: \omega_{3}=1:-3: 5, a_{1}: a_{2}: a_{3}=23,10:-4,89: 1\right.$; vgl. [3]).
20. Maltesergetriebe für Filmtransport (Stillstandsmechanismus mit ungleichförmiger Übersetzung)
Die Anzahl der Modelle soll nach bereits ausgearbeiteten Plänen im Laufe der Zeit etwa verdoppelt werden. Die Modelle Nr. 2, 7, 8 und 19 befanden sich im Österreichischen Pavillon der Weltausstellung 1967 zu Montreal.

LITERATURHINWEISE

[1] W. Wunderlich, Zur angenäherten Geradführung durch symmetrishe Gelenkvierecke, Z. angew. Math. Mech. 36, 103-110 (1956).
[2] W. Wunderlich, Höhere Radlinien, Österr. Igen. Archiv. 1, .277-296 (1947).
[3] W. Wunderlich, Höhere Radlinien als Näherungskurvan, Österr. Ingen. Archiv. 4, 3-11 (1950).

[^0]: * Technische Hochschule Wien, Österreich.

