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Concerning the Trajectory of the Center of Mass
of the Four-Bar Linkage and the
Slider-Crank Mechanism*

W. Wunderlich

Abstract

The path of the combined center of mass of a four-bar linkage is shown to be a
coupler curve which is similar to a coupler curve of this mechanism. Also, the
trajectory of the total center of mass of a slider-crank linkage is shown to be a
connecting-rod curve which is similar to a connecting-rod curve of this mechanism.
These properties are extended in order to determine the necessary conditions for
redistributing the link masses such that the total center of mass of a given linkage
remains stationary.

1. Ler AgA,4,4; be a plane four-bar linkage with the fixed pivots A4, and 4, (Fig. 1).
The change of position of the moving links is best described by considering the linkage in
the complex plane, and by expressing the variable vectors 4g4;, 4,4,, A, A, as the complex
numbers u,, u,, u3 which have constant absolute magnitude and a constant sum.

|we|=a,=const., (k=1,2,3), u;+us+us=a=const. 6))

s Y miimpaimz=1:3:2
\\\ /«/ 01 :05+0.2i,0,=06+0.3i
S S 03=07+0.4i

Figure 1. Four-bar linkage with center of mass trajectory
and coupler curve which is similar to it.

*Buletinul Institutului Politehnic din lasi Serie Noud, Tomul X (XIV), Fasc. 1-2, 285-291 (1964).
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A point B which is rigidly connected to coupler 4,4, is defined by the vector 4,B=fu,
with f=const., and this point describes a coupler curve during the motion. This well
known algebraic curve, which is dependent on six mechanism parameters and is in general
of sixth degree and tri-circular,* is a coupler curve. It finds a great deal of application in
machine design because of its simple generation as well as of its great variety of forms.
If one lets point A4, be the origin of the complex plane, one may very easily describe the
coupler curve with the complex equation '

z=u,+pu,; (2)

where the variables u, are based on equation (1).T
For the subsequent material, we need the following:

First Auxiliary Theorem

If uy, u,, uy are three complex variables with invariant absolute values as well as a
constant sum a#0, then each linear combination Z=ua+ otyu; + ot 1, +o3u; with constant
coefficients o, represents, in general, a coupler curve which is similar to a coupler curve
which has been created by a four-bar linkage where u, +u, +u;=a.

Elimination of u; leads to the linear polynomial

Z= (09 +aza)+ (g —oz)uy + (o3 —03)u, (3)
in u; and u, only, which may be presented as a linear function of z (2):

Z=c+yz with c=0y+aza and y=0o; —a5, 0))

where f=(a; —a3)/(0y — 3).

The position vector Z comes from the coupler curve z through the similarity trans-
formation Z=c=yz. The coupler curve Z which is created by the four-bar linkage
ByBB,B; has the fixed bearing points By(Z,=c) and B;(Z;=c+ya=a,+a,a) as well
as the moving links v, =yu,, (k=1, 2, 3).

The position vector Z is reduced accordingly to a circle whenever:

a,=a3, (B=0, centerpoint B,) (5a)
oy =0, (B=1, centerpoint B5) (5b)
o =0ay, (B= o0, centerpoint B,=B;). (5¢0)

The position vector shrinks finally to a point whenever:
%y =0y =0d3, (5d)
namely to the point B, = B;.

2. We now consider a real four-bar linkage 4,4,4,A; (Fig. 1). The movable links may
have the masses m,, m,, m; with the sum 1 and the centers of mass S, S,, S;. Let their
positions be given by the vectors A4,S; =01, AS,=0,u,, A,S;=03u; with the general
complex constants ¢, defined. Therefore, their complex coordinates become:

SI: Zy=0qUy, SZ: 22=u1+02u2, S3: Z3=u1+u2+0'3u3 (6)

* Compare references [1] and [2]. A well developed theory of the coupler curve by complex numbers
was given by A. Haarbleicher [3].

t The author gave in [4] a short analytic proof, based on this complex notation, of the classical theorem
of S. Roberts which concerns itself with the three-fold generation of coupler curves of four-bar linkages.
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The total center of mass S of the movable parts can therefore be given by:

S: Z=myzi+MyzZy+Mazz3=0 Uy + 00U, + 03U
with oy =m0 +my+my=1+m(oc,—1), )

Oy =My0,+ My, 03 =Mm303.

On the basis of Auxiliary Theorem No. 1, one may note:

Theorem No. 1. The path of the combined center of mass of a four-bar linkage is, in
general, a coupler curve which is similar to a coupler curve of the particular mechanism.

With this one proves in general a fact which, under limiting assumptions (i.e. for real
g,) and from a purely geometric point of view, was given by R. Kreutzinger [5].

For the fixed bearing points B, and Bj; of the four-bar linkage B,B,;B,B,, which creates
the path of the center of mass, and which at each moment is similar to four-bar linkage
Ay Ay A, A3, one finds, with consideration of o, =0 and (7), the coordinates

By: Zo=myo3a,  Bs: Zz=[1+m(6;—1)]a. (8)

Through this, the position of this four-bar linkage is fully defined. The characteristic
quantity g with which one defines the coupler point S, which describes the coupler curve
has, according to (4) and (7), the value:

_@—as)  myoy+my(l—0y) :
(g —a3) myoy+my+my(1—03)

®

With the help of these formulae one may find the trajectory of the center of mass of the
four-bar linkage of Fig. 1. Positions where the tangent is horizontal belong to such
equilibrium positions of the mechanism whose stability or lack of stability can be recognized
easily.

With the criteria given in (5a)-(5d) one obtains information concerning the exceptions
to Theorem No. 1. The trajectory of the center of mass becomes a circle when =0, 1, or co.
This has the following consequences in the light of the real and positive values of m,:

B=0: 0,/(c5—1)=m3/m,;
X A,A4,8,+ £ S3434,=+m, A1S5/A3S3=m3.A14,/(m, . AyA3),  (10a)
B=1: o/(c,—1)=my[m,;
KA1 AoS1+ XS, 424, =Fm,  AS1/4,S,=m,. AoA/(m,.A14;), (10b)

pf=c0: m(1—0,)+myo3=1. (10c)

Finally, as a consequence of (5d) and (7) one may still state the remarkable:

Theorem No. 2. The total center of mass of a four-bar linkage is stationary when the
following conditions are satisfied:

6, =1+, and o,=1+"24M5 (10d)
mj ms; mj
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Its position is given by m3o;a. The double conditions of (10d) are equivalent to the two
conditions of (10a) and (10b). These also furnish the geometric significance. The con-
dition may certainly be fulfilled since the individual centers of mass of each link can be
brought to any desired point on the link through the appropriate link design and distribution
of mass. Such a distribution of centers of mass for the mechanism of Fig. 1 with real o,
is shown by Fig. 2. A four-bar linkage which is constructed according to Theorem No. 2,
which has an invariant total center of mass, is in neutral equilibrium in all positions. It
maintains this property also after changing the bearing points 4, and A, since the condition
(10d) concerns itself only with masses and centers of mass of the three links.

Az

mimyimy = 1:3:2
a'|=_|,0'2=2/3,0'3=2

Figure 2. Four-bar linkage with stationary center of mass.

3. The slider-crank mechanism A4,4,4,A45 (Fig. 3), with fixed bearing point 4, and point
A, translating in a straight line, may be interpreted as the limiting form of a four-bar
linkage which has the second bearing point 45 at infinity. The analytic treatment now needs
a certain modification. Let A, be the origin of a complex plane and assign the vectors
AgA;, A;A, to be expressed by the complex variables u,, u, with fixed absolute values.
Then let u; be a complex constant which represents the vector 4,4, whose terminal lies on
a straight line through A, which is parallel to the path of 4,. One may describe the
mechanism by:

[uk|=ak=const., (kl=]_, 2), u3=const.,

arg. (uy +u,+us)=a=const. (11)

) jseeeeenisecnssnagana,s,

. 0.."\.“".

N m imz:mz=[:2:3
V2 | 2 3
M o7 0,2-05-0.4-1,0,0.6 +0.3+i

Figure 3. Slider-crank mechanism with trajectory of center
of mass and coupler curve similar to it.
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If one places, as shown in Fig. 3, the real axis parallel to the path of A,, one obtains ¢=0.
For the usual inline slider-crank, one may assume u;=0.

Point B, which is rigidly connected to the coupler 4,A4,, which may be defined by the
vector A; B=fu, with B=const., describes during the motion a so-called-connecting rod
curve. This well known algebraic curve, which is dependent on five parameters, is in general
of fourth degree and monocircular [1]H3]. Tt again may be described by the complex
equation: '

Z=u1+ﬂu2, (12)

where the variables , must now satisfy (11).
One notes the corresponding:

Second Auxiliary Theorem

Whenever u;, u, are two complex variables with fixed absolute values, and whenever
their sum is increased by a constant u3 and that sum has the fixed argument a, then every
linear combination Z =0 +ayu; +ayu, with constant coefficients o, is in general a con-
necting rod curve of the slider-crank which is similar to a connecting-rod curve created
by the slider-crank mechanism of arg(uy +u, +uz)=a.

The transformation

Z=ao+a1(u1 +ﬂu2) Wlth ﬂ=0£2/0(1, (0(1 ?SO), (13)

shows that the position vector Z of the connecting-rod curve z (12) originates from the
similarity transformation Z =0oy+a;z. The slider-crank mechanism ByB,B,B, which
generates the connecting-rod curve Z has the fixed bearing point By(Z,=0,), the movable
links ByB, =v,=o,u,, ByB,=v,=0,u,, and the guided straight line for B, which goes
through the point ay—a,u; and has the direction a+arga;.

The curve given by the position vector Z is reduced to a circle (centerpoint B,) in the
case:

a;=0, (B=00) or a,=0, (=0). (14a, b)
It shrinks to the point B, in the case:
a1=a2=0_ (140)

4. Consider now the material slider-crank mechanism AyA;A,A45 (Fig. 3). The movable
links AgA; (crank), 4,4, (connecting rod), and 4,4} (piston) may have the relative
masses my, m,, my with the sum 1 and the centers of mass S, S, S3. Their positions are
given by the vectors 4,5, =0,u,, A8, =0,u, with, in general, the complex constants
0y, and also by 4,S,=s,=const. The complex coordinates of the individual centers of
mass are therefore:

Sl: 21=01u1, Sz: 22=u1+0'2u2, S3: Z3=u1+u2+S3 (15)
The total center of mass S of the movable parts is then given by:

S: Z=m121+m222+m3z3=a0+a1u1 +a2u2 ’
with oy =mjs;, a=mio +my+my=1+m (o, —1),

Ay =mMy0,+mj. (16)
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Based on the Auxiliary Theorem No. 2 one may therefore state:

Theorem No. 3. The trajectory of the total center of mass of the slider-crank mechanism
is, in general, a connecting-rod curve which is similar to a connecting-rod curve of the
mechanism.

For the fixed bearing point B, of the mechanism B,B,;B,B, which generates the
trajectory of the center of mass, and which at all times is similar to the mechanism
AgA A, A5, one finds according to [3]:

B0: Zo=a0=m3S3. (17)
For the moving links the vectors are:
ByBy=vy=auy, BB, =v,=04u,, BBy =v3=0u3. (18)

Since the straight line of the path of B, passes through B,, one may define this new
mechanism completely by the above. The characteristic quantity 8, which describes that
point S on the connecting rod which generates the connecting-rod curve, has according to
(13) and (16) the following value:

B2 Ma0atiy 19)
o mMmyo;+my+mgy

The trajectory of the center of mass of the slider-crank mechanism shown in Fig. 3 was
determined with the help of these formulae.

To determine the exceptions of Theorem No. 3, one uses the criteria (14a)-(14c).
The trajectory of the center of mass becomes a circle whenever f= o0 or 0. This takes place
when:

7, = e ) (20a)
my
o= (20b)
my

In the first case one finds the center of mass of the crank S; on the extension of the
crank radius 4,4, while in the second case the center of mass of the connecting rod S,
lies on the extension of the connecting rod 4;4,. The position of the center of mass S,
of the piston is of no importance in these considerations.

If the conditions (20a) and (20b) are fulfilled at the same time, one obtains according
to (14c) a slider-crank mechanism which has a stationary total center of mass at B, (17).
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