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Abstract

The geometric fundamentals for two-disk cam mechanisms operating two rigidly
connected oscillating followers with straight-line or circular-arc profiles are
developed. Special attention is paid to the existence of single-disk cam
mechanisms of this kind. For this purpose the problem of plane curves with an
isoptic circle is discussed. Finally single-disk cam mechanisms with two oscillating
roller followers joined by a coupler link are considered.

Zusammenfassung— Beitrage zur Geometrie von Nockentrieben mit
Schwinghebeln: W. Wunderlich.

Die geometrischen Grundlagen fiir Doppelnockentriebe, die zwei starr
verbundene Schwinghebel mit geraden oder kreisformigen Flanken

betatigen, werden entwickelt. Besonderes Augenmerk wird der Existenz von
Einscheiben-Nockentrieben dieser Art zugewandt. Zu diesem Zweck wird das
Problem von ebenen Kurven mit einem isoptischen Kreis erértert. Schliesslich
werden Einscheiben-Nockentriebe mit zwei Schwinghebeln betrachtet, die durch
ein Koppelglied gelenkig verbunden sind.

Pe3slome — Bkj1aJ B T€OMETPHIO KYJIaYKOBBIX MEXaHU3MOB C KOpoMbicnamu: B. Bynnepaux.

B paboTe u3/105XeHBI TEOMETPHYECKHE OCHOBBI IBYXJMCKOBBIX KyJIa4KOBBIX MEXaHM3MOB, O4YEPYEHHBI X
NPSAMBIMH JIMHUSIMH UJIM IyTaMM OKPY>KHOCTEH ¥ IPUBOISAIIMX B ABMKEHUE NBA KECTKO COEAUHEHHBI X
kopombicia. Ocob6eHHOe BHHMaHME YZEJICHO CYILECTBOBAHMIO OMHOMMCKOBOTO KyJIAaYKOBOTO MeXa-
Hu3Ma 3toro poza. C 3roif nenpio o6Cyxnaercs mpobiieMa IUIOCKMX KDPHBBIX C HM3ONTHYECKHM
KpyroM. B xoHIle paccMaTpUBaeTCsi OMHONUCKOBBIM KyJIAYKOBbIM MEXaHU3M C JBYMsi KOPOMBICTIAMH ,
COEMHEHHBIMHU IAPHUPOM.

1. Cam Mechanisms with Oscillating Flat-Faced Followers

A PLANE cam mechanism operating an oscillating follower consists of three systems:
The fixed system or frame 3,); the cam disk 3, with a characteristic profile ¢, usually
rotating uniformly about a fixed pivot O € 3; the follower 3, turning about another
fixed pivot P € 2, and being in steady contact with the cam. The corresponding profile
of the follower will at first be supposed as a straight line p through P. The rotation of the
cam system 3,; induces an oscillating motion of the follower system 3,. In most cases
cam mechanisms serve as dwell mechanisms; then a certain part of the cam profile ¢ is
an arc of a circle with center O (Fig. 1).

The shape of the cam profile ¢ may be described by its “support function” u(7),
relating the central distance u of the profile tangent p with its angle of direction 7. Thus
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Figure 1. Cam mechanism with oscillating flat-faced follower.

the cartesian equation of the tangent line p in a rectangular coordinate system x, y with
origin O and belonging to 3, is given by

xcos7+ysinT = u(7). (1.1)

By differentiation we get the normal of the envelope c of the straight-line set (1.1) with

—xsinT+ycosT=iu(r) = du

e (1.2)

Solving the pair of equations (1.1) and (1.2) we arrive at a parametric representation of
the cam profile c:

X=ucosT—usinr, y=usint+ucosr. (1.3)

Differentiating once more we get the normal of the evolute of ¢

2
—xcos'r—ysin1-=i1('r)=% (1.4)
and thus the radius of curvature of c:
p=u+ti. (1:5)

To ensure the convexity of the cam profile ¢, necessary in the case of flat-faced fol-
lowers, u(7) must be a periodic function with period 27 and u +ii = 0.

The motion of the cam mechanism is characterized by the relation between the
angles of rotation ¢ and  of cam and follower, respectively. If these angles are measured
from the line connecting P with O, we see from Fig. 1:

¢+r=¢+%, u(r) =1-sin, (1.6)
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where [ means the known distance between the pivots O and P. Equations (1.6) define
the characteristic function () by means of the parametric function ¢(7) and y(7). Figure
2 shows the diagram of the motion law y(¢) corresponding to the cam mechanism of
Fig. 1, where the non-circular part of the disk profile ¢ has been assumed to be an
ellipse.
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Figure 2. Motion law for the cam mechanism of Fig. 1.

In practice the motion law (¢) will be prescribed, and the problem consists in
finding the cam profile c, i.e. its support function u(7). The analytical way is evident:
Starting with arbitrary pairs of corresponding values ¢, § we get from (1.6):

r=y—ep+Z,  u=l-siny. (1.7)

The coordinates x, y of cam points C € ¢ may then be calculated by means of (1.3) with

a=1¢~cosw=’—‘l‘q'l,°T°51'ﬁ (1.8)

’

where the prime indicates the derivative with respect to ¢. The value of  was deter-
mined from the relations

b=y'o=9p+l (1.9)

The construction procedure is also simple. We consider the relative motions of 3, and
3., with respect to the cam system 2,;. The point P € 3,0 describes a circle o with center
O and radius [. Any position P € o determines the angle ¢ by XxOP =m— . The
corresponding angle § determines the follower line p, as XOPp = ¢ Proceeding in this
way, we get the desired cam profile ¢ as the envelope of its tangent lines p. To add the
points of contact we mark the instant center I of 3,/3:. According to the theorem of
Aronhold-Kennedy it is situated on the line PO at a distance OI = r, defined by the
proportion

r:(l+r=dy:dp=19¢":1. (1.10)
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The perpendicular to p, issued from I, cuts the line p in its contact point C with ¢
(Fig. 1).
The polar equation

!

,=r(¢)=1_"k_, (1.11)
-y
defines the centrode in 3,;. Its angle 6 with O is determined by

_dr_d W
cote—rd‘p——d(plnr 7a=v) (1.12)

By aid of this angle § we are now able to add the osculating circle of the cam profile c at
any point C. Using the well-known construction of Bobillier* we draw an auxiliary line
h through I which makes the angle 6 with the profile normal IC, we cut h with the line
PH|IC and we project the point H € h from O onto the normal IC; thus we get the
center of curvature A * of ¢, belonging to the point C (Fig. 1).

Figure 3. Bobillier's construction.

If we prefer to calculate the radius of curvature p = A*C we can start from formula
(1.5). Differentiating equation (1.8) and making use of (1 .9) we get

l

p=m(1—¢')(1—2¢')simp+ Y’ cos . (1.13)

) A slight modification enables us to apply the developed theory to oscillating
followers with a straight-line profile not passing through the pivot P: adding to u(7) a
constant a (positive or negative) we get the support function of a cam profile ¢ which is

*Figure 3 recalls the general construction of E. Bobillier. At any moment of a constrained plane motion
there exists a (quadratic) correspondence T: X — X*, relating each point X of the moving plane with the
center of curvature, X*, of the path of X traced in the fixed plane. This transformation T relates also the
corresponding centers of curvature of a moving curve and its envelope. The transformation T has the
following essential property: If two pairs of corresponding points 4, A* and B, B* are on different pole rays,
the lines 4B and A*B* meet on an axis & which passes through the instant center I and forms there the same
angle with one pole ray as the other pole ray with the centrode tangent ¢ (Fig. 3). Thus it is possible to
construct the centrode tangent ¢, if two point pairs A, A* and B, B* on different pole rays are known. Con-
versely, if the instant center /, the centrode tangent ¢ and one pair 4, A* are known, it is possible to find any
other pair B, B*. In Fig. 1 we know indeed the pole I, the centrode tangent ¢ and the pair of corresponding
points P, P* = O; hence we can construct the center of curvature, 4*, of the profile c as the point correspond-
ing to the point at infinity, 4 L p, which is the center of curvature of the moving line p generating the profile c.
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parallel to c at the distance a and appropriate to work with a follower line pllp that is
offset from P by the distance a (see Fig. 11).

2. Double-Disk Cams with Flat-Faced Followers

The cam disk ¢ operating the straight-line follower p is well able to achieve the
forward motion. To avoid springs or other elastic links maintaining the contact of p and
¢ during the return motion, we may arrange a second straight-line follower p rigidly con-
nected with p and forming in P a constant angle = —y with p (Fig. 4). This line p belong-
ing also to the system 3,, generates in 3, a second cam profile ¢ which is appropriate to
produce the return motion of the oscillating follower, provided the cam center O
remains in the interior of the moving angle X pp = 7 —y.

The point of contact, C, of p and ¢ is found in the same way as before by issuing the
normal /C 1 p form the instant center I. The corresponding center of curvature, A*,
may be added again by aid of the construction of Bobillier using the centrode tangent 7.
Both of the centers A* and A* are situated, as all points related to points at infinity, on
the so-called “cusp circle” which touches the centrode in /.7 Thus the center of curva-
ture A* can simply be found by intersecting the normal / C with the cusp circle
determined by I, t and 4 * (Fig. 4).

Figure 4. Double-cam mechanism with two rigidly connected oscillating flat-faced
followers.

+The cusp circle, to be considered as a locus in the fixed plane, is analogous to the well-known “inflection
circle” of the moving plane; it is identical with the inflection circle of the inverted motion. The cusp circle
comprises all cusps which at the moment may appear at envelopes generated by moving straight lines; these
lines form a pencil.




The characteristic function for the motion of p is described by
B(e) = w(e) +- 2.1

From this relation the support function i (7) of the second cam profile ¢ can be derived
by analogy to (1.7); thus we arrive at '

T=Y—e+T=r+y, a=l-sing=l-sin@+y). 2.2)

Developing the last expression and comparing it with (1.7) we find

il = ucos y+ﬂsiny, 2.3)
which leads to the algebraic identity

u?+ a2 — 2uii cos y = % sin? y = const. 2.4)

’Ll}is means in geometrical interpretation that the end-points of the perpendiculars
Op = uand Op = i have constant distance [ - sin y (see Fig. 8).

If, as in Figs. 1 and 4, the first disk profile ¢ has an axis of symmetry, X, containing
the cam center O, it is easy to see that the second disk profile ¢ has also an axis of
symmetry, %, forming in O the angle y with x.

3. Single-Disk Cams with two Rigidly Connected Oscillating Flat-Faced Followers

Double-disk cams as just described in Section 2 can be constructed — within certain
limits —for any motion law ¥(¢). An interesting geometric problem is raised by the
question whether there exist cam mechanisms with two rigidly connected oscillating
straight-line followers p,p where the two disk profiles c¢,¢ are identical. Of course the
characteristic function y(¢) of such a single-disk cam mechanism will then be of a
rather special kind and no more arbitrary, at least not in its whole extent.

M. Goldberg[1] indicated the possibility of using an elliptic cam profile ¢ = ¢ having
its center in O and operating against two perpendicular follower lines p L p (y=ml2,
Fig. 5). The existence of this mechanism, recently studied in [6], is based upon the
well-known fact, due to de la Hire (1685), that all rectangles circumscribed to an ellipse
¢ are inscribed in a concentric circle o, called the “‘orthoptic circle” of c.

Considering for a mechanism of this kind the relative motion 22/, defined now by
the sliding of the sides p,p of a rigid angle X pPp = w— along the cam profile c =¢C
while the vertex P of the angle wanders on a circle o, the general problem leads us back
to the question whether there exist convex plane curves ¢ which possess an “isoptic
circle” o. From this point of view, Green[2] gave a general, but not quite satisfactory
solution: The particular examples derived by his method are of strongly transcendental
character and rather different from Goldberg’s algebraic prototype.

Let us investigate a convex curve ¢ whose isoptic curve for a certain view angle
m— is a circle o; this means that the pair of tangent lines p,p issued from any point
P € o to ¢ forms always the constant angle X pPp =m—. Starting from an arbitrary
tangent p to ¢ with intersection points Py, P, on o we may construct an equiangular
polygon....P_PoP,P; . .. inscribed in the circle o and having at each corner the interior
angle m—. Such a chord polygon of o has periodic structure and in general sides of




Figure 5. Goldberg’s elliptical single-cam mechanism with two perpendicular
oscillating flat-faced followers.

only two different lengths P_,P, = P,P,=... and P,P,=P,P,=... (Fig. 6). All
sides must touch the curve c.

This polygon is closed if and only if the fraction 7r/y is rational. Otherwise the poly-
gon is infinite and its sides are alternatively touching two circles k,k concentric with o.
As the points of contact form two everywhere dense sets on k and k, we see, by reasons
of continuity, that there exists, for irrational 7/, only the trivial solution ¢ = k= k
(Y = const).

Non-trivial cam mechanisms of the kind in question therefore are possible only for
rational values of 7r/y > 1. If the polygon closes after m circuits, we have, with respect
to the even number 2n of sides (conditioned by the two sorts of sides), the relation
m-2m7=2n-vyor

3.1)

Figure 6. Closed equiangular chord polygon of a circle.
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For m = 1 the chord polygons are convex and the sought-for cam profile ¢ = ¢ may be
determined as the envelope of an appropriate continuous family of such polygons. A
family of this kind can be constructed as follows: We start with an arbitrary equiangular
chord polygon PP, . .. P, of the given circle 0 and mark an instant center I, on the
radius OP,; let C, and C,, be the end-points of the perpendiculars dropped from /; to
the sides P,P, and P,P,,, respectively. Now draw at random a convex arc C,C,, as part
of ¢, having no other points in common with the sides P,P, and P,P,, and opening its
concave side to O. Any chord PP} of o touching the chosen arc C,C,, is then to be
completed to an equiangular chord polygon P,P;...P,, of o. The one-parametric
family of polygons constructed in this way determines the rest of ¢ as the envelope of
the sides. The contact points and osculating circles (if existing for the initial arc) may
be added by kinematical methods as described in Section 2.—For m > 1 (odd, see
Section 4) we have star polygons (Fig. 10) and the instruction prescribing the initial arc
of ¢ has to be slightly modified.

The example shown in Fig. 7 for m/n =% (y = 60°) started from the regular poly-
gon existing, because of reasons of continuity, in each family of chord polygons of the
kind in question. Then a parabola was used as initial arc C,Cg, touching the sides PP,
and P,P, to avoid corners of the profile c. The additional arc C,C,, derived from the
parabola C¢C}, is part of an algebraic curve of class 4.

Since each of the generating chord polygons P;P; ... P,, is mapped onto itself by
the rotation S with center O and angle 2y, the enveloped cam profile ¢ = ¢ possesses the
same rotational symmetry, i.e. is invariant with respect to the cyclic transformation
group Si (i=1,2,...n) of order n.

4. Analytic Treatment of Curves with an Isoptic Circle

For the analytic treatment of the disk problem considered in Section 3 let us put, for
brevity, [ = 1. Describing the disk profile ¢ = ¢ by means of its support function u(7)

Figure 7. Single-cam mechanism with two rigidly connected oscillating flat-faced
followers.




which is to be periodic with period 2y, we have, in accordance with (2.4), the relation

u?+ > —2uii - cosy = sin?vy “4.1)

for the central distances u = u(7) and & = u(r+vy) of two adjacent profile tangents
p and p forming the prescribed view angle X pPp = w— in the point P of the isoptic
circle o of ¢. This relation expresses the elementary fact that the segment joining the
end-points of the distances « and & has constant length sin v; it represents a chord sub-
tending the angle y at the circumference of an auxiliary circle with unit diameter OP
(Fig. 8).

Figure 8. Transformation of coordinates.

As the relation (4.1) is valid for all values of the independent variable 7 it is an
identity in 7 and a functional equation for the unknown function u(7).

If we consider the quantities u and & as special coordinates of the point O, localizing
it by its distances from the axes p and p for an observer in the system 3, the relation
(4.1) may be considered as the equation of that circle & with center P and radius [ =1
which is the path of O in the course of the relative motion 3../3, (Fig. 9). For simpli-
fication it seems advisable to introduce normal cartesian coordinates v,v by means of
the linear transformations

u=av+po o = Cos (—g——%),
with 4.2)
i = Bo+av ,B=sin<%—%).

The new axes have common bisectors with p,p and Fig. 8 shows the geometric meaning
of v and .
Now the equation of the unit circle o reads simply

v+vi=1. (4.3)

This condition is equivalent to (4.1) and might be verified by direct substitution. The
function

or) = =8I _ euln) —fulry) (4.4)

has the same period 2y as u(7). Calculating its value for 7+vy we find, with attention to
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the periodicity of u(7):

) =Ml B2 _ B @9

Hence the structure of the original functional equation (4.1) has been essentially
simplified: The new equation (4.3) is free of the mixed term.

Knowing with (4.3) the square sum of v and 7, we may yet prescribe the square dif-
ference

2—ot=f(r): (4.6)

This function, arbitrary in principle, must have again the period 2y and further satisfy
the condition

flr+y) =—v*=—f(7). 4.7

Having now chosen an appropriate function f(7), we get at first from (4.3) and (4.6) the
auxiliary functions

o) = VI +f@], 5@ =v@+y)= VIl —f()] (4.8)
and then by means of (4.2) the support function
u(r) = aw(r) +po(r) 4.9)

of the sought-for cam profile c, possessing the unit circle o as isoptic curve. For a con-
vex cam profile c the functions u(7), v(7) and f(7) must have not only the period 27, but
also 27r. We see again, in accordance with (3.1), that y/ has to be rational; otherwise
we should have two incommensurable periods and the continuous function u(7) would
reduce to a constant, characterizing the trivial circle profile.

In the case of a rational fraction y/m = m/n (3.1) any linear combination of 2y and
24 with integral coefficients A, w is also a period:

A-2y+,u.'27'r=()\m+pn)27w. (4.10)

Since m and n are relatively prime, there exist integers A and p such that Am+un = 1;
hence

21T

n

R

4.11)

is a period of u(7). If m were even, y would be a period, i.e. u = i and therefore u =
const, which means again only the trivial circle profile. Consequently m is to be suppos-
ed as odd[2]. With respect to (4.11) and (4.7) appropriate functions f(7) may be given
by a trigonometric series (finite or convergent)

f(r) =3 (aicos int+b;sinint), i=13,5,... (4.12)
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The simplest examples are furnished by
f(r) =a- cosnr. (4.13)
The corresponding profile curves c¢ are algebraic, but not necessarily convex. To get
convex curves the constant a (which can be supposed to be positive) must be sufficient-
ly small. With m/n =% (y = 90°, a = 1, B = 0) we are led from
u(t) = v(r) = Vi(1 +acos 27) (4.14)

by use of (1.3) to

(4.15)

This is, provided 0 < a < 1, Goldberg’s elliptic cam with eccentricity Va (Fig. 5).
In the case m/n=3% (y=60°, a= (V3+1)/2V2=10.9659, B= V3—-12V2=
0.2588) the function

f(r) =a-cos3t (4.16)

leads to algebraic cam profiles c for a flat-faced follower pair with the angle of 120°. A
convex specimen corresponding to a = $ is to be seen in Fig. 9. Following (1.1), (4.8)
and (4.9) it was constructed as the envelope of the straight-line set

x cos 7+ 7y sin 7T = av+ B0 with v = V(1 +a cos 37), 7= Vi1 —acos37).
4.17)

To determine the class of c, i.e. the invariant number of (real and imaginary) tangents

v2=Z(2+ cos3t)
7= 2(2- cos31)

u = v-cos’5° + v-sin15°
G = v-sin15° + V-cos15°

Figure 9. Algebraic curve of class 12 with isoptic circle.
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through any point of the plane, we have to fix x and y in (4.17) and then to solve the
equation for 7. By means of the complex substitution exp it =t we arrive after elimina-
tion of the square roots at an algebraic equation of the 12th degree in 7. Hence the class
of ¢ is 12. In general the class is 4n for n odd, and 2n for n even, with exception of
n =2 (ellipse: class 2).* The value m/n=1% (y = 135°, a = 0.9239, B = —0.3827) leads
by way of

f(r) =a- cos4r . (4.18)

to algebraic cam profiles of class 8 for a flat-faced follower pair with the angle of 45°. A
convex specimen corresponding to a = 1/20 is shown in Fig. 10.

v’=%+‘%cos4'r

72 =4 - fcosét
u=av+f3v, G=Lv+av

a=cos 22.5°, 3=-sin 22.5°

\
X,

/
\\__\)L_//

Figure 10. Algebraic curve of class 8 with isoptic circle.

It should be noticed that the method pursued here does not furnish all curves with
an isoptic circle, because the assumption of the period 2y for u(7) is not a necessary
consequence of the fundamental equation (4.1). This assumption was introduced with
respect to the existence of circumscribed equiangular chord polygons of the circle o, as
they are required by the desired convexity of the sought-for cam profiles ¢ (Section 3).
In this case both of the intersection points of a profile tangent p with the circle o are
equivalent, and in each of them p is met by one of the adjacent tangents forming with p
the angle m—~. The other possibility to be considered is that p is met by both of the
adjacent tangents in the same point on o. In every point P € o we have then a regular
star of tangent lines of ¢ forming with each other all angles which are integral multiples
of y. Hence curves c of this kind may be generated kinematically as common envelopes
of all rays of such a regular star (finite for rational y/m), which is uniformly turning about

*The curve drawn in Fig. 9 is only one of four branches of the complete algebraic curve defined by 4.17),
where all sign combinations of the square roots v,v are to be taken into account. Two additional (non-convex)
branches are to be seen in [7]. For a = 1 the curve splits into two six-cusped hypocycloids, each of class 6.




13

its vertex P, while P is moving periodically on the circle o. Since these curves cannot be
convex, they will not be further discussed here (see [7]). Well-known examples are the
cusped cycloids, generated by a uniform motion of P on o.

A cam mechanism derived from the three-cusped hypocycloid ¢ whose vertex circle
o is orthoptic (y = 90°) is shown in Fig. 11: A convex parallel curve ¢ of ¢ could (theor-
etically) operate a right-angled follower yoke with straight-line profiles. As ¢ is of con-
stant breadth, the yoke might be completed to form a square. The cam and the square
then work like a pair of gears according to the law ¢ = 3¢/4.

Figure 11. Cam disk of constant breadth with square yoke.

5. Double-Disk Cams with two Rigidly Connected Roller Followers

A commonly used cam mechanism has at the end of its follower a circular roller
which is in steady contact with the rotating cam disk. The profile of the disk —not neces-
sarily convex —is a parallel curve ¢ of the path ¢ described by the roller center 4 in the
course of the relative motion 3,/2,. The constant distance between ¢ and ¢ is equal to
the roller radius a (Fig. 12). _

From the geometric point of view the curve c (the “pitch profile”’) is more important
than the working cam profile ¢ itself. When c is given by means of its polar equation
r = r(7), corresponding rotation angles ¢, Y of cam and follower are obtainable from the
triangle OAP, for instance by double application of the cosine theorem:

L2—12—r(7) _ L+ 12—r¥(7)

cos (p+17) = 20 (7) , cosy 51

5.1
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The constants L = PA and [ = OP denote the length of the follower lever and the central
distance of the pivot P, respectively. Formulae (5.1) determine the motion law Y(e)in
parametric form by means of the auxiliary functions ¢(7) and (7).

If the motion law y(¢p) is prescribed, the pitch curve c can be obtained as follows:
Starting with arbitrary pairs of corresponding values ¢,  we get from the triangle OAP
(Fig. 12) the polar coordinates r, 7 by

r2=]2+L2—2lLcosy, sin(r+¢) =%sin . (5.2)

min=3, max=5

Figure 12. Double-cam mechanism with two rigidly connected oscillating roller
followers.

To provide the return motion a second follower P4 may be added which is rigidly
connected with the first follower P4 and hence turning about the same pivot P. Its
contact roller—with the same radius a for simplicity —is operated by a second cam
disk, whose profile is the parallel curve in a distance a inside the path ¢ described by the
roller center A during the relative motion 2,/%,. Itis sufficient to know the pitch profiles
¢ and ¢, the working cam profiles being parallel curves of ¢ and ¢ offset by the distance
a; ¢ and ¢ may be considered as ideal cam profiles for vanishing roller radius.

If the first pitch profile c is given directly or determined by the motion law ¢ (¢), it is
a mere routine task to derive the second pitch profile ¢. We have only to consider the
relative motion 3,/ of the triangle APA: This motion is defined by the path ¢ of 4 and
the circle path o of P (center O, radius 1). Using a sheet of transparent paper (vellum)
for the moving system 3, the path ¢ of A is quickly constructed. An axial symmetry of
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¢, as assumed in Fig. 12, does not induce a symmetry of ¢. Tangents of ¢ are simply
added by means of the instant center / which is the point of intersection of the normal
of ¢ in A with the line OP; the tangent of ¢ in A4 then is perpendicular to I4. If the center
of curvature 4* of ¢ belonging to A (and valid also for ¢ in C) is known, the center of
curvature A* of ¢ belonging to A (and valid also for the corresponding point C of the
cam profile) is to be found again by Bobillier’s construction (Fig. 12).

Devices for automatic grinding of the second cam profile have been indicated by
Hagedorn[3]. The idea consists in fixing the system 3, and replacing the second roller
by a grindwheel which is steered by the first roller led along the first profile.

6. Single-Disk Cams with two Rigidly Connected Roller Followers

A problem analogous to that which was treated in Section 3 concerns the question
whether it is possible that the two cam disks operating a pair of rigidly connected
oscillating followers as considered in Fig. 12, may coincide. The answer depends on the
question whether there exist identical non-trivial pitch profiles ¢ and ¢.

For simplicity let us assume that the two follower levers PA and PA be of equal
length L. To get a better insight into the transformation V: 4 — A4 which maps ¢ onto ¢,
we may introduce the circular arc A4 = v with center P and radius L as a material
element into the system 3,. This arc v envelopes a circle w in 3, with center O and
radius L — /. When the initial point A4 is led along the curve c and the arc v is sliding along
the fixed circle w, the end-point A4 will trace the curve .

Applying repeatedly the transformation V to an arbitrary point 4, of a curve ¢ = ¢,
we see that such a curve contains with each point 4, also the points 4, = A, A, = A,
etc. In general these points will constitute two infinite sequences Ao, As, A4, . . . and
Ay, Az, As, . .. distributed everywhere densely along two circumferences with the
common center O (Fig. 13). In particular the named sequences will be finite and closed,
if and only if the ratio X 4,0A,:w is rational. Since this ratio depends on the varying
central distance OA,, a non-trivial curve ¢ = ¢— different from a circle with center O —
would cut each circle of an infinite concentric set in infinitely many points. It is evident
that there exists no simply closed curve, as needed for the pitch profile, with such
property.

Now the situation is completely different, if —as compatible with the geometric
character of the transformation V' —the arcs 4,4, A,A4,, . . . all belong to the same circle
v. Provided the sequence 4, A4, ..., A, = A, is closed, its points form a rigid regular
polygon and may well be wandering along a common path ¢ = ¢.

Figure 13. Iterated transformation V.
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An example of this kind is shown in Fig. 14 for n = 3. An equilateral triangle 4,4,4>
is turning about its center P with constant angular velocity 1, while P is running on a
circle o (center O) with angular velocity 3. In the course of this “planetary motion” the
corners A, A, A, describe simultaneously a two-lobed trochoid ¢ = ¢. Three equal
circles with the centers Ay, 4, A, and common radius g generate as a common envelope
the parallel curve ¢ of ¢ offset by the distance a. Fixing now the system OP (=3,), the
cam ¢ (=3,) would operate the three rigidly connected roller followers PA,, PA, and
PA, (=3,). The systems 3, and 3, work like gears with velocity ratio 3:2; hence the
motion law of the mechanism is = 2¢/3.

Figure 14. Two-lobed cam operating three rigidly connected roller followers.

This example is scarcely of high practical value, though there exists a certain con-
nection with the famous Wankel motor[6]. Anyway it is of theoretical importance as it
demonstrates in principle the possibility of single-cam mechanisms with rigidly
connected roller followers, a fact which sometimes is denied.

It will be objected that the follower movement in Fig. 14 is not an oscillating one,
and it seems to be impossible indeed to get single-disk cam mechanisms of this kind for
oscillating output. Nevertheless a certain success is obtainable with approximate
solutions. As indicated by Hinkle[4] and Hagedorn[3] it is possible to operate by a
single-disk cam a pair of equal rollers oscillating along a straight line through the cam
center O and having an invariant central distance 2b from each other. This arrangement
corresponds to an infinite lever length L = o. The common relative path ¢ = ¢ of the
roller centers A and A is a curve which is its own conchoid with respect to O. Such a
“curve of constant diameter’”’ may be defined by a polar equation of the form

r=f(r) +b, (6.1)

where f(7) is a periodic function with the property f(r+ ) = —f (7). Thus the forward
motion of the follower determines already its return motion.

The idea is now to construct a pitch profile ¢ according to (6.1) and then to combine
it with a finite yoke APA. It is advisable to choose the lever length L and the central

distance OP = [ of the pivot P so that
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to have exact coincidence in the symmetric middle position A,PA, of the yoke. In other
positions there is only approximate coincidence: 4 and 4 cannot belong to c at the same
time, but the error is rather small. This is to be seen in Fig. 15 which illustrates an ex-
ample constructed by means of the function f(r) = e cos 7. In this case the working
cam profile ¢ is a curve parallel to a Pascal snail c:

r=e-cost+b. (6.3)

The pitch profile c (6.3) is convex if b = 2e > 0. A numerical investigation of the errors
occurring would be desirable.

Figure 15. Approximate single-cam mechanism with two rigidly connected oscil-
lating roller followers.

7. Cam Mechanisms with two Oscillating Roller Followers Joined by a Coupler
Link

A new kind of single-cam mechanism was recently proposed by Jackowski and
Dubil[5]: Two oscillating followers PA and OB of equal length L and with equal end
rollers (centers 4 and B, common radius a) are operated by a cam disk ¢ whose center
O is the mid-point of the segment PQ = 2! joining the follower pivots P and Q. A sup-
plementary coupler link with joints in 4 and B connects the two followers (Fig. 16).
This mechanism — whose possibility is not sufficiently clarified— consists of five links:
Frame 3, (PQ), cam 3, (&), followers 2, (PA) and 3; (QB), and coupler 3. (4B).

The existence of double cam mechanisms of this kind is evident, even in the case of
different follower lengths, unequal roller radii and arbitrarily arranged pivots. In the
course of the relative motion 3,,/3,, which has to be considered, the point 4 € X, is led
around a curve c in 3, parallel to the (given) cam profile ¢. The points P and Q are
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Figure 16. Single-cam mechanism with two oscillating roller followers joined by a
coupler link.

constrained by 3, and 3, to move on circular paths, and the point B € 3, traces in X, a
certain path d, constructible without difficulty (Fig. 17) and defining the second disk
profile d as a parallel curve. The tangent of d in B is also simple to derive from the
(known) tangent of ¢ in A: The corresponding normals must meet in the instant center
I of %,/3; which is situated —according to the theorem of Aronhold-Kennedy —on the
line connecting the pole O of 3./, with the pole J = AP - BQ of 3,/3, Another con-
struction which avoids the point J, often inaccessible, is the following (Fig. 17): We cut
the line OA'||PA with the normal A4’ of ¢ and then draw parallels OB’|QB and A'B’||
AB; thus we get the normal BB’ of d.*

The decisive question for the existence of single-disk cam mechanisms of the
present kind is now: Is it possible that the associated pitch profiles ¢ and d coincide? A
positive answer is promptly given: Starting with an arbitrary position Py4,B,Q, of the

T ————

)

Figure 17. Construction of double-disk cams for follower linkage.

*This construction is based upon the homothetic triangles OA’'B’ ~ JAB and may be interpreted as a
velocity diagram.
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linkage, any smooth arc from 4, to B, may serve as part of ¢ = d; leading the joint 4 on
this arc c, the pivots P and Q are varying on the circle o (center O, diameter P,Q,) and
the joint B traces the complementary arc d from B, to 4, (Fig. 18). To avoid corners in
A, and B, the arc c is to be chosen in such a way that the corresponding normals meet
in a point I, on the line through O and the pole Jo = PyA, * Q oBo-

It is advisable to begin with the extremal position PyA4,BoQo, i.€. to make X OPod, =
¥min and consequently X 0Q By = max- The end tangents of the arc ¢ = 4,B, then are
perpendicular to O4, and OB,, respectively, as I, = O. The shape of ¢ may be deter-

Figure 18. Construction of the pitch profile for the single-cam mechanism of
Fig. 16.

mined by a prescribed law {(p) defining the advance motion of the follower PA from
Ymin tO Ymax. Thus the return motion is already determined; it is equivalent to the move-
ment of the follower QB during the advance motion of PA. In Fig. 18 the part A3B, of
the arc 4,B, was chosen as a circle quadrant with center O to get a dwell mechanism;
consequently the corresponding part B;A, of the complementary arc B,A, is also a
circle quadrant with center O.

The working profile of the definite cam disk consists of curves ¢, d parallel to the
pitch arcs ¢ and d at a distance a equal to the roller radius (Fig. 16). When the cam is
driven in the opposite sense the characters of the forward and return motions will be
interchanged.

It is improbable that there exist closed algebraic or analytic cam profiles for this
single-disk mechanism.
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