Mechanism and Machine Theory, 1975, Vol. 10, pp. 273-278. Pergamon Press. Printed in Great Britain

Contribution to the Geometry of Elliptic Gears
W. Wunderlicht

and

P. Zenowi

Received on 10 June 1974

Abstract

It is shown that the motion of elliptic wheels, usually derived from the
antiparallelogram, can be constrained by a crossed transmission belt which is wound
around two equal elliptic disks, confocal with the rolling ellipses. By considering the
relative paths of belt points, one arrives at a simple gearing system for wheels of this
kind which is the natural generalization of the usual involute system for circular
wheels.

1. Antiparallelogram and elliptic wheels

Ler E,F,E,F, be an antiparallelogram, i.e. a special four-bar linkage with equal opposite sides:
E,F,= F,E>=2a, E,F,= E,F,=2e (Fig. 1). It is well-known that, provided a > e, the pole
curves for the motion of the coupler E.F, with respect to the fixed base E,F, are two equal
ellipses p1, p» with the foci E;, F, and E,, F respectively, and the major axis of common length
2a [2, section 8.6], [4, section 19]. During this motion p is rolling on p, without slip. The varying
contact point P (instantaneous center or pole) is the intersection point of the arms E,F> and
F,E,. The ellipses p: and p, are always mirror images with respect to the common tangent ¢ in P
which is the axis of symmetry for the quadrangle.§

For an observer on the crank E;F, this link seems to be fixed, whereas the ellipses pi, p2 turn
around E,, F,, respectively, and roll along each other. This modified mechanism is the basis of
elliptic wheels. A primitive realization could be obtained by materializing the ellipses p., p-in the
form of simple disks, although “friction wheels” of such a kind would not work during a complete
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Figure 1. Elliptic wheels derived from the antiparallelogram.
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§This symmetry leads to the relation E,P + PF, = E,P + PF, = E,F, = 2a which proves that p,, the locus of P, is the
ellipse with foci E,, F, and major axis 2a.
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revolution. Corresponding gears could be constructed by means of the classical principle of
Reuleaux: a suitable tooth-profile c, is arbitrarily chosen in the plane of p,, and the corresponding
profile ¢, is then generated as the envelope of all positions which c, takes in the plane of p, during
the rolling motion of p, on p,; at any moment the common normal in the varying contact point of
¢ and ¢, must pass through the instantaneous pole P[4, section 46].

2. Transmission belts

Without disturbing the motion of the elliptic disks p,, p» an endless belt might be wound
around them, crossing itself at the contact point P. In a similar way a crossed belt of length
4(a + ¢), encompassing the quadrangle E,F,E-F, along its four sides, might be introduced.

The second author raised the question whether there possibly exists an oval g, between the
ellipse p, and its focal segment E,F, which could be connected with a corresponding oval g, by a
closed crossed belt. Using the three-pole theorem of Aronhold-Kennedy[4, section 25] it
becomes clear that in any case the crossing point of the straight parts of the belt must coincide
with the pole P.

To answer Zenow’s question, let us begin with an arbitrary straight line through the pole P
(Fig. 2). This line, representing an initial position of one straight part of the belt, cuts the ellipse p,
in a second point P}, forming there with p, a certain angle a’. After a certain time, P} coincides
with the corresponding point P of p,, symmetric to P} with respect to the common ellipse
tangent ¢ at P. At this moment P} = P; is the new instantaneous center, and the new position of
the segment PP determines the other straight part of the belt. Its protraction P3P forms at P} the
same angle a’ with p, and meets p in a second point P4. Proceeding in this way we see from Fig. 2
that there arises a reflection polygon PP P/ ... of p, whose sides are all tangents of the required
curve g, and an equal reflection polygon PP;P5.. . of p, is circumscribed to the corresponding
curve g,.

Now a well-known theorem, due to J. V. Poncelet (1822), states that any reflection polygon of
a conic is circumscribed to a confocal conic (which may degenerate to the pair of focal points).
This theorem, usually derived by means of the projective theory of confocal conic systems|[1,
section 30], will be proved by elementary methods. To find the tangents from a point P to a given
ellipse g, the following construction is commonly used (Fig. 3): Draw an auxiliary circle h with
center P and passing through one of the foci E, F of g, say E, and cut it by a second circle g with
center F, having the major axis 2a of g as radius; the two intersection points Q;, Q, then
determine the required tangents t,, t, as the bisectors of the angles EPQ; and EPQ, respectively.
If the points Q, and Q, situated symmetrically to the line FP, coincide in Q on FP, the bisector
of the angle EPQ gives the tangent t of the confocal ellipse p which passes through P. As the
angles EPQ and EPQ; have a ¢common leg and differ by <Q,PQ = <£QPQ: = o, their bisectors ¢
and t, form the angle o/2; the same is valid for ¢ and t.. Hence the light ray t,, tangent to the
ellipse g, is reflected in P on the confocal ellipse p into another tangent ¢, of g; obviously this is
the root of Poncelet’s theorem.

Figure 2. Reflection polygons in the elliptic pitch curves.
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Figure 3. Poncelet’s theorem.

There is another famous theorem, due to Ch. Graves (1841) and closely connected with the
previous facts: If a closed rope, longer than the perimeter of an ellipse g, is slung around g and
spanned by a pin P, then P can be led along an ellipse p, confocal with g. In fact the system is in
equilibrium, if the spanning force T applied at P is acting in the direction of the internal bisector
of the straight parts of the rope, as the tension forces T, T- in these parts have the same value
(Fig. 4). Hence the pin P can move only orthogonally to this bisector if the direction of T is
changed, which means that the external bisector ¢ of T, and T is the tangent of the path p of P.*
According to Poncelet’s theorem, p is an ellipse. The classical “gardener’s construction” of the
ellipse appears as a limit case of Graves’ theorem, i.e. when the elliptical base g is reduced to the
focal segment EF.
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Figure 4. Graves’ theorem.

Without pretending that these heuristic considerations are a rigorous proof of Graves’
theorem—an exact proof will be indicated in section 3—we can complete Fig. 4 by adding its
mirror image with respect to the tangent ¢ and thus obtain a mechanism equivalent to the pair of .
elliptic wheels p., p.: it consists of two equal elliptic disks g, and g», confocal with P and p-,
respectively, and connected by a closed crossed belt which transmits the rotation about E, into a
rotation about F, (Fig. 5). Of course the transmission ratio of the angular velocities is not
constant.

The reasoning was essentially based upon the fact that the rolling curves p1and p, are always
symmetrically situated with respect to their common tangent t. It is easy to see that this
symmetry occurs only for elliptic wheels. Nevertheless the transmission problem can be posed
for other noncircular wheels too, e.g. for those which were investigated in [4, section 45]. The
existence of closed transmission belts has been led back by Zenow to a difficult system of
functional equations, but it seems that there do not exist solutions in the general case.

The same is also true for any other base curve g, different from an ellipse.




Figure 5. Rotating elliptic disks connected by a crossed belt.

3. Elliptic gears

As already mentioned in section 1, elliptic wheels can be supplied with teeth by means of
Reuleaux’s method, i.e. by choosing a suitable tooth profile ¢, and constructing its envelope ¢2
during the motion which is determined by the rolling of the ellipse p. on the ellipse p».

We propose to take for ¢, an involute of some ellipse g, confocal with p,. Thus each normal
t, of ¢, is tangent to g; and cuts p, in a first point P;. According to Reuleaux this normal t, has to
be transferred to the corresponding point P of p, forming there the same angle a with p» as t;
forms with p.. This position t. is then a normal of the second tooth profile c2. Corresponding to
Poncelet’s theorem (section 2), t. is a tangent of the ellipse g> which is equal to g, and confocal
with p,. Hence the profile c: is an involute of g (Fig. 5). Corresponding points C, on ¢, and Cz on
¢ are determined by equal segments P,C; of t, and P,C: of ., as they become the contact point
of the tooth profiles when, after a certain rotation of the wheels, P, coincides with P, (on the line
E,F>). As pointed out in [4, section 40] for circular wheels, but valid also for non-circular ones,
the contact element of corresponding tooth profiles ¢, and c, varies in such a way that the normal
of the element is rolling on the evolute g, of ¢, and on the evolute g of c: simultaneously; this
fact is again a simple consequence of the three-pole theorem. Thus the normal might be realized
by a belt wound around g, and g.. Repeating this conclusion for opposite tooth profiles in the case
of elliptic wheels, we have a rigorous proof for Graves’ theorem without needing the usual elliptic
integrals.

Summarizing we may consider our corresponding tooth profiles ¢, ¢ for elliptic gears as the
paths of a point C fixed on the straight part of an auxiliary transmission belt, wound around
elliptic base curves g, g- which are confocal with the rolling pitch ellipses pi, p- (Fig. 5 and 6).1
This is a natural generalization of the known interpretation of the usual involute profiles for

Figure 6. Involute system for elliptic gears.

It seems attractive to use the degenerate ellipses g, = E,F, and g, = E,F, as then the tooth profiles ¢, and ¢, would
become circular arcs, but it is obvious that teeth of this simple shape would not work in critical phases of the motion. In fact,
in those positions where E,, E,, F,, F, are on the same straight line, the common normal in the contact point of
corresponding circular tooth profiles passes through the rotation centers E, and F., and thus these profiles are not able to
transmit rotation.
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circular gears [2, section 9.6]. The circular limit case is obtained for vanishing eccentricity (e = 0),
but.only for the transmission ratio —1.

In his book on Plane Kinematics[4, section 46] the first author has studied another
generalization of the involute system to elliptic gears, imposing the condition a = const. Then the
base curves g, and g, are equal evolutoids of the pitch ellipses p; and p», respectively, and the
tooth profiles ci, ¢, are involutes of these evolutoids g, g.. A disadvantage of this system is a
certain lack of symmetry, as for opposite profiles different (although equal) evolutoids have to be
used. The advantage of the new system is to be seenin the fact that both left and right sides of the
teeth are derived from the same base ellipse g or g..

Following the geometric generation of the teeth, appropriate ways of manufacturing elliptic
gears could be derived, similar to those for circular involute gears[2, section 9]. For finishing
purposes for instance there might be used a grinding wheel with a plane face normal to its axis; if
it is moved in such a way that a line parallel to this axis is constrained to roll on the base ellipse g,
the flat side of the tool would grind the involute face of a tooth. A similar concept would serve for
the motion of cutters or hobs generating the tooth spaces in the gear blank.

Corresponding developments could be performed for elliptic bevel gears by means of
operations on the sphere analogous to those used here in the plane.

4. Conclusion

Elliptic gear wheels are based upon the motion of an antiparallelogram E,F,E,F, and its pole
curves which consist of two equal ellipses p, and p, with foci E,, F, and E., F, respectively (Fig.
1). Any two smaller equal ellipses g and g, confocal with the rolling ellipses p, and p, and rigidly
connected with them, have the property that a crossed transmission belt slung around them does
not disturb the original motion (Fig. 5). This fact gaves the possibility for an apparently new gear
system for elliptic wheels which represents a natural generalization of the well-known involute
system for circular wheels: The tooth profiles are throughout involutes of the “base” ellipses g
and g (Fig. 6). Corresponding tooth profiles ci, c. may be considered as the relative paths of a
point C on the straight part of the mentioned transmission belt (Fig. 5).

The problem of similar developments for other non-circular wheels remains open.
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Beitrag zur Geometrie elliptischer Zahnrader
W. Wunderlich und P. Zenow

Kurzfassung—Die zur Relativbewegung der beiden kiirzeren Seiten eines gelenkigen
Antiparallelogramms gehérigen Polkurven sind bekanntlich zwei kongruente Ellipsen,
die ihre Brennpunkte in den Gelenken haben und deren Hauptachsenldnge mit jener
der langeren Antiparallelogrammseiten iibereinstimmt (Bild 1, gleichlaufiges Zwillings-
kurbelgetriebe). Diese Ellipsen p1, p2 bilden als Walzkurven die Grundlage der
elliptischen Zahnradpaare. Sie kénnten durch einen geschlossenen, sich im Walzpunkt
P kreuzenden Treibriemen umschlungen werden, ohne dass die Bewegung behindert
wird, und Gleiches gilt fiir einen das Gelenkviereck umschlingenden Treibriemen. Der
zweite Verfasser hat die Frage nach Zwischenformen aufgeworfen, bei welchen die
Bewegung durch einen gekreuzten Transmissionsriemen vermittelt wird, der zwei
innerhalb der Walzkurven angeordnete ovale Scheiben g1, g2 verbindet.

Wahrend das verallgemeinerte, fiir beliebige Walzkurven gestellte Problem sehr
schwierig ist und vermutlich iberhaupt keine Losung besitzt, gelingt die Lésung fiir
elliptische Walzkurven wegen deren symmetrischer Lage beziiglich der Wélztangente
elementar. Anhand von Bild 2 wird zunéchst gezeigt, dass die Scheibenrénder g1, g2
Reflexionspolygonen der Ellipsen p1, p= eingeschrieben sein miissen. Gestitzt auf einen
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Satz von Poncelet, demzufolge ein an einer Ellipse p wiederholt reflektierter Lichtstrahl
immer wieder denselben, zu p konfokalen Kegelschnitt g beriihrt (Bild 3), ergibt sich
eine elliptische Gestalt der Scheiben g+ und g=. Ein damit zusammenhangender Satz
von Graves besagt ferner, dass ein Stift P, der mittels eines gespannten geschlossenen
Fadens um eine Ellipse herumgefiihrt wird, eine zu g konfokale Ellipse p beschreibt
(Bild 4). Spiegelt man schliesslich diese Figur an der Bahntangente t von P, so gelangt
man zu dem gesuchten Riementrieb (Bild 5).

Die von einem Punkt C eines geradlinigen Riemenstiicks in den beiden rotierenden
Radsystemen durchlaufenen Relativbahnen c1, c2 stellen geeignete Zahnprofile fiir die
Ellipsenréder dar (Bild 5). Damit ist ein einfaches Verzahnungssystem fur Ellipsenrader
gefunden, bei dem die Zahnprofile Evolventen von kongruenten, zu den Walzkurven
p1, p2 konfokalen Ellipsen g1, g2 sind, die sowohl fiir die rechten als auch fiir die
linken Zahnflanken brauchbar sind (Bild 6). Dieses neue System stellt eine natiirliche
Verallgemeinerung der bei kreisrunden Radern gebréuchlichen Evolventenverzahnung
dar und erdffnet auch technisch realisierbare Méglichkeiten zur Herstellung elliptischer
Zahnrader.

Unter Berufung auf das bekannte Verzahnungsprinzip von Reuleaux ergibt sich auf
diesem Weg nebenbei ein elementarer Beweis flir Satz von Graves, der fiir gewdhnlich
mit Hilfe von elliptischen Integralen gefiihrt wird.
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