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MATHEMATICS

ON DEFORMABLE NINE-BAR LINKAGES WITH SIX
TRIPLE JOINTS
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(Communicated by Prof. W. Baarpa at the meeting of October 25, 1975)

1. If two coplanar point-triples 41, As, A3 and B;, Bs, Bs are connected
by the nine line-segments 4;B; we get a plane network consisting of a
closed hexagon A1B3A3B145Bs and its three diagonals 4;B;. A framework
of this structure is in general rigid, even if the six knots in which the
nine bars concur three by three are materialized by cylindrical joints
whose axes are perpendicular to the plane of the configuration.

It is well known that this framework is infinitesimally deformable, if
the six knots are situated on a conic k (which may degenerate into a
line-pair) [3, 5]. It can be shown that the number of knots on the conic
may be arbitrarily raised [6].

Moreover there exist two particular forms which are continually defor-
mable. These remarkable plane linkages which allow a constrained motion
were detected by A. C. Dixon [2] in the course of a difficult investigation
devoted to the problem of jointed quadrilaterals whose corners can move
on circles. The present note gives an elementary exposition of the two
mechanisms in question. It is evident that the six joints of each one are
always situated on a conic %, although this conic will vary in the course
of the motion.

Questions of this kind have newly arisen in connection with the theory
of trilateration [6], a modern method of geodesy which intends to de-
termine the configuration of two finite point-sets by measuring directly
all distances from the points of the first set to the points of the second
set (without the use of angles).

2. The first mechanism of Dixon [2, § 27, lit. d] is characterized by the
condition that the points 4;, 43, A3 and B;, Bs, Bs are situated on two
orthogonal lines. Let us use these lines as axes of a cartesian system of
coordinates #, y. Denoting the distance of Ai(z;, 0) and Bj;(0, y;) with 7y,
we have for the quadrangle 4:B14:B; (fig. 1):

(2.1) =21+, ra=a3+y3, rie=2ai49s, ra=23+yi
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It follows

(2.2) rh+ri=rh+rh,

and thus we have the

Lemma. A quadrangle with orthogonal diagonals is characterized by
equal square sums of the two pairs of opposite sides. 1)

Hence our jointed quadrilateral 4,B142B; can move in such a way that
its corners run along the two perpendicular axes  and y. Adding now
an arbitrary point 4s on z and joining it by rods with B; and B,, we
see by application of the Lemma to the quadrilateral 4;B143B; that A3
will also move on z. Repeating the argument for an arbitrary point Bs
of y which is joined by rods with 4;, 4s and A4s, we arrive at Dixon’s
deformable nine-bar linkage (fig. 1).

Fig. 1. Dixon’s nine-bar mechanism of the first kind.

As yet more points A; €2 and B;ey may be added, we obtain the
generalized

THEOREM 1. If m=3 collinear points Ai, ..., Am and n=3 collinear
points Bu, ..., By, are connected by the mn rods AiB;, and all knots are
realized by cylindrical joints, then the so constructed linkage is continually
deformable with one degree of freedom, provided that the two supporting lines
are orthogonal. 2)

3. The second mechanism of Dixon [2, § 28, lit. n, o, p] was originally
described as follows: In one (particular) position the quadrilateral

1) The Lemma is valid not only for plane quadrangles, but also for skew ones.
2) The Theorem holds also for the spatial linkage with skew supporting lines.
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A2B2A3B3 is a rectangle whose circumecircle k passes through 4; and Bj,
and in this position 414, and BB are parallel, as also 4;43 and B1Bs

(fig. 2).

Fig. 2. Dixon’s nine-bar mechanism of the second kind; initial position.

By reasons of symmetry we state 4;B1=AsBy=A3B3, A1By=AB,
A1B3=A3B;. For abbreviation we put

(3.1) r11="Tea=r33=a, r3="raz=>0, riz=ra1=c¢, riz=ra1=d.

Inspecting once more fig. 2, we see that the linkage contains two
antiparallelograms A1B1A2Bs and A;B1A3Bs whose pairs of diagonals
A145||B1Bs and A1A43||B1Bs have perpendicular directions; hence their
mirror axes z, y form also a right angle at the center O of the circle k.
Furthermore the linkage contains two quadrangles A;B;42B3 and
A1B1A3Bz with orthogonal diagona.ls A]_Az J_ B]_B3 and A1A3 _L Ble,
respectively. Applying the Lemma of Section 2, we find that the quantities
of (3.1) are related by

(3.2) a?+-b2=c?+d2.

Now the deformability of Dixon’s linkage is simply to be proved: Begin
with a fixed base 41B; of length a and construct two antiparallelograms
A1B143Bs; (side lengths a, ¢) and 41B143B3 (side lengths a, d) with given
orthogonal directions of the diagonals. The sides 43B; and A3B; of
common length a are parallel and thus represent opposite sides of a
parallelogram A;B;A3Bs (fig. 3). The other sides A2B3 and A3Bs of the
parallelogram have, due to the Lemma and (3.2), the common constant
length b. Varying now the prescribed directions 4142 | A;A43 we obtain
a continuous one-parametric sequence of positions of the linkage.

Thus we have a more natural characterization of Dixon’s second
mechanism:

THEOREM 2. The plane nine-bar linkage consisting of two antiparallelo-
grams A1B1A2Bs and A1B1A3Bs and the parallelogram AsBsA3Bs is con-
straintly deformable. During any deformation the mirror axes of the anti-
parallelograms remain perpendicular and the variable triangles A1A2A3 and
B1B2B3 conserve their right angles at Ay and Bi.
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4. Using the mirror axes of the antiparallelograms as frame for cartesian
coordinates z, y (fig. 3), we may put:

(4'1) Al(x’ ?/), A2(x’ _y)s A3(—x: ?/), Bl(Xi Y)’ BZ(X7 - Y)’ B3(—X’ Y)

This point-sextuple depends on four parameters, so that four conditions
may be imposed to determine it. If we take the four conditions (3.1) with
given distance values a, b, ¢, d, we have a poristic problem: It has no
solution for independently chosen values a, b, ¢, d because of a contra-
diction, but an infinite set of solutions if these quantities are bound by
the necessary condition (3.2); thus it is sufficient to prescribe the values
a, b, c.

To determine a possible position of Dixon’s linkage we have to solve
the system of equations

(4.2) (0= XP+(y— YPR=a?, 0+ X2+ (y+ FP=b, (@—XP+(y+ P=c,
or

(4.3) 22442+ X2+ V2=1(a2+02), 40X =02—c?, 4yY =c2—a?.

Fig. 3. Bottema’s 16-bar mechanism, containing Dixon’s mechanism of the second
kind in general position.

As there are three equations for four variables, we get oo! solutions and
have an analytic proof for the deformability of the linkage.
The elimination of X, Y from (4.3) leads to the equation

(4.4) 1622y2(22 + y2) — 8(a2 + b2)x2y2 + (¢ —a?)2x? + (b2 —c2)2%y2 =0

of a circular sextic | which represents the common path of all joints (4.1)
during that motion of the linkage which leaves invariant the axes z and y.
This sextic contains also the free intersection points (z, +7Y), (+X, y)
ete. of the antiparallelogram diagonals, consists of four equal ovals placed
symmetrically with respect to the coordinate axes (fig. 3) and possesses
an isolated double point at the origin O.
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5. Let us now complete the configuration (4.1) by adding the points
Ay(—2, —y) and By(—X, —Y). By reasons of symmetry in fig. 3 or by
means of the relations (4.2) we find

(5.1) A4B4=a, A4B1=B4A1=b, A4Ba=B4A3=G, A4B2=B4A2=d.

This means that the new points 44, Bs may be connected with each
other and with the original sextuple (4.1) by seven additional rods of
known constant lengths. Thus we arrive at a deformable 16-bar linkage
with eight quadruple joints (fig. 3). It was detected by O. Bottema [1],
who derived it from a remarkable 12-bar linkage with eight triple joints
investigated by the author [4]. —The results may be summarized in

TrEOREM 3. If all corners A; of a first rectangle are connected by rods
of constant lengths with all corners Bj of a second rectangle having the same
mirror axes as the first one, there arises a plane deformable 16-bar linkage
with eight quadruple joints. It contains 4 parallelograms (equal two by two),
8 antiparallelograms (equal two by two), 8 quadrilaterals with orthogonal
diagonals (equal four by four), and 16 Dixzon mine-bar linkages (equal four
by four). During that motion which leaves invariant the mirror axes, all eight
joints Ay, By of the mechanism are led (two by two) along four equal branches
of a circular sextic (4.4).

6. All plane mechanisms considered here have spherical analoga. The
theory of the latter can be developed in quite a similar way, by interpreting
the variables # and y as geographical coordinates on the unit sphere
(longitude and latitude, respectively) and by replacing straight line
segments by arcs of great circles.

Instead of (2.1) we have then the formulae

(6.1) ©OS 75 = GOS X3 COS Yj,
hence instead of (2.2) the relation

(6.2) COS 711 - COS 7’22 = COS 7’12 COS 721,

characteristic for the orthogonality of the spherical diagonals of the
spherical quadrangle 41B14:B;.
The formulae (4.2) are to be replaced by

(6.3) cos a=sin y sin ¥ + cos y cos Y cos (x— X) ete.

It follows, analogous to (3.2),

(6.4) cos @+ cos b=cos ¢+ cos d.

Hence the conditions @, b, ¢=const induce d= const.
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Therefore there exist spherical analoga not only for both of the Dixon
nine-bar mechanisms, but also for Bottema’s 16-bar linkage.
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