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Spatial Tractrices of the Circle.

WALTER WUNDERLICH (Vienna)

Sunto — Si studiano, nello spazio euclideo, le trattrici di un cerchio (raggio m,
segmento generatore di lunghezza l), cioé le traiettorie ortogonali del sistema
delle sfere unitarie aventi il centro sul cerchio dato. Si trova che le tratirici
sono in generale curve sferiche. piame mel caso limite. Le trattrici spaziali
del tipo ellittico (0 <m < 1) sono collineari (o inverse) ad eliche sferiche
con P'angolo di inclinazione o = arc cosm; si hanno esempi algebrici
relativi a valori razionali di m = sen o. Nel caso iperbolico (m> 1) le
tratirici sferiche sono collineari ad eliche tracciate su umn iperboloide di
rotazione a due falde. Le trattrici del lipo parabolico sono inverse del-
Pevolvente di un cerchio. La proiezione di wna trattrice spaziale dal centro
del cerchio direttore sopra un piano parallelo a quello del cerchio stesso &
una epicicloide nel caso ellittico, una paracicloide mel caso iperbolico e
Pevolvente del cerchio nel caso parabolico. Si danno semplici rappresenta-
zioni parametriche delle trattrici e interpretazioni non-euclidee di esse.

1. — Introduction.

When a line segment AB of constant length 1 is moved in such
a way that its initial point A4 is lead along a curve a, whereas its
endpoint B is constrained to proceed always in the direction BA,
describes a path b, called a tractriz of a. These tractrices b are the
orthogonal trajectories of the system of unit spheres @ centered in the
points of the guide curve a.

For instance the (common) tractrix b of the straight line a is
a plane curve [3; IT, 188], well-known as the meridian of E. Bel-
trami’s pseudosphere [1; I, 14]. The plane tractrices of the circle
have been studied in connection with certain helices on quadrics of
revolution by the author [4], who has given parametrie representa-
tions more convenient than those to be found in G. Lor1A [3; II,
195] and due to S. RICCATI.

The present note has the aim to determine the spatial tractrices
of a circle a. Evidently the develepments can be restricted to a
space of three dimensions; it is supposed to be euclidean and real,
although it will be occasionally extended to the complex domain.
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There will be distinguished three cases, corresponding to the (real)
value m of the circle radius and denoted as «elliptic» (0 < m < 1),
« hyperbolic » (m> 1), and «parabolic» (m=1).

2. — Elliptic case.

Let the guide circle @ be given, in cartesian coordinatcs, by
(2.1) 4 yi=m?*, z2z=0.

The system of unit spheres ¢ having their centers on a define an
enveloping surface @, in our case (m®<<1) a torus of spindle type
with two real conical points C(—mn, 0,0) and D(n,0,0), where

(2.2) m+ni=1, n>0.

We now apply the inversion (transformation by reciprocal radii)
P — P* with center ' and power 2n2. It is described by

(2.3) o*=2n2/Q, y*=2n%y/qQ, 2+ = 2n2(z + n)/Q
with Q@ = a® + y2 -+ (2 + n)?

and changes the family of spheres o, passing all through C and D,
into the family of planes o* tangent to a cone of revolution @*.
This cone (Fig. 1) has the same axis of revolution as the circle a,
its vertex at the origin D*= O and the angle of aperture 2o with

(2.4) cose=m, Sinoa=mn.

The equation of @* reads
(2.5) ME(a*2 -+ y*2) = prge

Any tractrix b of the circle a (2.1), characterized in Section 1
as orthogonal trajectory of the sphere system {¢}, is transformed
by the angle-preserving inversion (2.3) into an orthogonal trajectory
b* of the family of tangent planes ¢* of the cone @* (2.5). Conse-
quently b* is a spherical curve supported by a sphere X* with
center 0. As X*, orthogonal to @, is inversive to a sphere X ortho-
gonal to the torus @ and therefore passing through the imaginary
circle

(2.6) *+y*+nt=0, =2=0,
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we have:

THEOREM 1. — The spatial tractrices of a circle are spherical
curves. Tor a fiwed length of the generating line segment they lie on
spheres belonging to a pencil. .

The theorem is valid also in the hyperbolic and in the para-
bolic case, only that then the pencil of spheres is not hyperbolie
as in the elliptic case, but elliptic or parabelic, respectively.

The spherical curve b*, situated on a sphere ¥

(2.7) T | ¥ | ¥ o,

can be generated in the following kinematical way: Take a circular
disk with center O and radius ¢ and let its plane ¢* roll on the cir-
cular cone @*; then any point fixed on the border of the disk will
describe an orthogonal trajectory of all positions of the rolling
plane. It follows that such a path b* is a heliz on the sphere X*
and has the constant angle of inelination o, determined by (2.4).
This curve may be considered as a spherical involuie of the circle-
pair common to ®* and X*.

Choosing a suitable point of generation, the trajectory U* can
be parametrically represented by

a* = ¢(n cos N COS U - sin nu sin «) ,
(2.8) ¥ = e(n cos nu sin 4 —sin nu cos u) ,

2¥ = —oemeosnu .

In fact this curve lies on the sphere XZ* (2.7) and its tangents have
the direction

(2.9) @ g* e* = meos wimsinuin,

and thus the inclination angle a.

Tor rational values of n = sina the helix b* (2.8) is closed and
algebraic. Writing n = pu/v<<1 as reduced fraction (u,» positive
integers without common factor) and introducing the complex
parameter w = exp (iu/v), we find that b* is rational and of order
N=2(u-+»). Such a curve b* consists of 2u elementary arcs,
congruent to the primitive are 0 =u==/n and fastened together
in 2u cusps which are distributed alternatively over the circles
2% = 4 me with the common radius ne (Fig. 1).

Now we have to transform back the spherical helix b* (2.8)
by means of the inversion (2.3) with exchanged asterisks. Due to
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the fact that for points on the sphere X* (2.7) we have
(2.10) Q* = a** 4 y*2 4 (2% 4 n)?= ¢ + n? 4 2ne*,

the mapping of the sphere X* onto the corresponding sphere X can
be considered as a perspective collineation

(211)  z=2n%0*/Q*, y=2n y*Q*, 2+ n=2n2*+ n)/Q*
Its center is the point €(0, 0, —n) and its fixed plane f is given by
(2.12) t=2%=f= (n*—¢?)/2n .

For commodity we introduce homogeneous coordinates x,:z;:
'@y lxy=1:2.y:2. Using equations (2.8), (2.10) and (2.11) we obtain
—in the elliptic case—the following parametric represeniation cf
the spatial tractriz b of the circle a (2.1):

Lo= n*-+4 ¢*—2mnc cosnu ,

‘ ry= 2n*c(n cos nu cos u -+ sin nu sin u) ,
(2.13) ¢ : P g
Zy= 2n*c(n cos nu sin w —sin nu cos u) ,

r3= n(n?—c?).

Excluding the case ¢>= n® which leads to a plane tractrix of
the circle a, the tractrix b (2.13) is situated on the sphere X':

(2.14) (n2— e)[a? + 22 1 (3 4+ nwg)?] = dndaeas .

Its radius » and its central distance d, connected by the relaticn
d*—r2=n? are given by

(2.15) r=2n%c/(n*—e¢*), d=mnn2+c?/(n>*—c?).

As the spherical helix b* (2.8) is an orthogonal trajectory of a
rotational system of (great) circles of X*, the tractrix b (2.13) is
an orthogonal trajectory of a rotational system of (small) circles
on the sphere 2. This means that b can be considered as a spherical
tractriz of a circle in the sense of the geometry on a sphere. Under
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this point of view these curves occur already in[5].—Summariz-
ing we have

THEOREM 2. — In the elliptic case the spatial tractrices of a circle
are collinear to spherical helices. In the sense of spherical geometry
they are identical with spherical tractrices of a circle.

m=V5/3=0,746
n=2/3, N=10

c=2/5
d=17/12

Top view
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A well-known theorem, due to A. ENNEPER and easily verified
by means of (2.8), states that the orthogonal projection of a spher-
ical helix b* onto a base plane z= const is an epicycloid. If we
use for base plane the fixed plane B (2.12) of the collineation (2.11),
we see that the result of this projection is the same as the result
of the central projection of the tractrix b from the origin O onto
that plane . Thus we have

THEOREM 3. — In the elliptic case the ceniral projection of a spatial
tractriz of a circle, from the center of this circle and onto a plane par-
allel to that of the circle, is an epicycloid.

This simple fact has been used in Fig. 1 to construct a spatial
tractrix b of a circle a with radius m = 4/5/3 = 0.745, the length
of the generating line segment being 1. Corresponding to n==2/3
(= 2,v=3) these data determine an algebraic example. Due to
the collinear relation between b and the spherical helix b* both
of the curves have the same order N — 2(p +v) =10 and consist
of 2u =4 equal arcs with four cusps.

3. — Polar cone of the tractrix.

In 3-space the motion of the line segment AB generating a
tractrix b of a curve a can be produced by the rolling of a plane x,
perpendicular to AB at B, over the polar developable IT of b. At
every moment the instantaneous axis of rotation may be found as
the intersection line p of the normal planes to the paths of 4
and B, i.e. to the guide curve a and to the tractrix b. This line p
is the contact generator of I7 with & and represents the polar axis
(axis of curvature) of b.

In our case the tractrix b (2.13) is situated on a sphere X' (2.14),
hence the polar developable I7 is a cone issuing from the center
M(0,0,d) of X. Its generator » makes a right angle with the
osculating plane v of b. This plane touches the circle ¢ and there-
fore is determined by the point B (2.13), the corresponding guide
point A

(3.1) a&o:aél:aﬁzta'cs::l:mcosu:msinu:(),

and the point T(0:—sinu:cosu:0) A short calculation leads to
the following equation of 7— ABT:

(3.2) — MR x + NP COS U Xy +- NESIn U@, 4 (md — 7 cos nu)rz=10.
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Now the awis p—perpendicular to v (3.2) and passing through
M(1:0:0:d)—is described by

(3.3) o=, x;=mncosu,xr,= n*sinu, ry;= (m -+ v)d—r cosnu .

This is also a parametric representation (in » and v) of the polar
cone II. The parameter curves »= const are situated on cylin-
ders of revolution with the common axis 2, and homothetic with M
as center of similitude. Each of them—take for instance the curve
v = — m—is point-path of a special motion which is combined of
a uniform rotation about the fixed axis # and a harmonic oscilla-
tion along z with frequency n. This motion (« harmonischer Um-
schwung ») has been discussed by W. KAUTNY [2]. Such a trajectory
v = const is transformed into a sine curve, if its supporting circular
cyclinder is developed upon a plane.

The base xy= 0 of the polar cone I/ (3.3) is defined by
v = (r/d) cosnu —m. From its polar equation

(3.4) R = n*d/(r cos nu — md)

we see that this base curve is derivable from a conic with num-
erical eccentricity &= r/md = 2nc/m(n*- ¢*) by means of a «fan
transformation » which leaves unchanged the radii (measured from
the origin 0), but multiplies the polar angles with the constant
factor n—*>1 [3; I, 423; II, 131, 200]. This conic (n=1) is an
ellipse (e*<<1) if r*<m?, a parabola (e2=1) if r>=m? and a
hyperbola (e2>1) if »2>m? (Fig. 1) (¥).

4. — Hyperbolic case.

If the radius of the guide circle « is greater than the tractrix-
generating unit segment (m > 1), then the torus ®—envelope of the
family of unit spheres ¢ centered on «—is of ring shape and has
no real conic points. Thus the application of the inversion (2.3)
is not possible in real way. Nevertheless we can use some resulls

(*) In the latter case the real points at infinity of the base curve (3.4)
correspond to the real inflection points of the orthogonal projection of the
tractrix b onto the plane of «; the inflection tangents touch the guide
circle a.
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of Section 2, mainly Theorem 1. In fact, as there exists a pencil
of spheres X

(4.1) B+ Yy 42t —2dz=n*=m*—1>0,

making right angles with all spheres o, each orthogonal trajectory b
of the family {¢} will lie on one of the spheres X (including the
plane z = 0).

Instead of the mapping (2.11) we apply now the harmonic homo-
logy P — P*, defined by

(4.2) x=nx¥e¥, y=ny**, 2=mnil*.

This involutory perspective collineation—with center H(0, 0, —n)
and fixed plane y: z = 2* = n—changes the sphere X (4.1) into
the hyperboloid of revolution X+

(4.3 EE YR Dl mP= ()
y ]

it is of two sheets, with right angle of aperture, and has its center
at I(0, 0, —d). A tractrix b on X, whose tangents meet the circle a
(2.1), is transformed by the homology (4.2) into a curve b* on X*,
whose tangents meet the circle at infinity a* which is determined
by the cone of direction

(4.4) nE(@*? 4 y*2) = mgH2

This means that b* is a heliz with angle of inclination o —
= arctan(n/m).

Such a helix 5* can be represented in the following form ana-
logous to (2.8):

x* = ¢(n chnu cos u 4 shnusin u) ,
(4.5) y* = c¢(n chnusin w — shnu cosu) ,

Z¥ = 4+ emchnu—d .

Indeed this curve lies on the hyperboloid X* (4.3) if we put
= d*+ n? and its tangents have the direction

(4.6) ¥ y* et =mecos u.msinu: + n,

according with (4.4). Transforming now back the helix b* (4.5)
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by means of the homology (4.2), we arrive at the following para-
metric representation (in homogeneous coordinates again) of the
required tractriz b in the hyperbolic case:

Ty= - emchnu—d,
2y = cn(n chnu cos u - shnu sin ) ,
2y= cen(n chnu sin v — shnu cos u) ,

Ty= n2.

Bach of these curves is situated on a sphere X (4.1) with radius
r= ¢ and central distance d = V'¢2 — n? from the origin, has one real
cusp (for w=0) and approaches asymptotically (with u— - o)
the circle a®+ y®=n? z=0. This circle is the base of the el-
liptic pencil of spheres (4.1) and is the unique algebraic real tractrix
of the circle a (2.1).

The orthogonal projection of the helix b* (4.5) onto the fixcd
plane y (z=mn) of the homology (4.2) is a so-called parecycloid
[3; II, 120]. Because of its invariance under the homolegy it is
identical with the central projection of the tractrix b from the
origin 0. Thus we have

THEOREM 4. — In the hyperbolic case the spatial tractrices of a circle
are collinear to helices on a hyperboloid of revolution of two sheets.
Their central projections from the center of the circle onto a plane
parallel to that of the circle are paracycloids.

The polar cone of the tractrix b (4.7) has its vertex in the center
M(0, 0, d) of the sphere X' (4.1) and can be obtained in the same
way as in Section 3. Its base in the plane z= 0 has the polar
equation

(4.8) B = n*d/(-- md—ecchnu) .

5. — Non-euclidean interpretations.

The essential role of the spheres o and X in the foregoing
developments suggests interpretation of the results in the so-called
conformal model of a non-euclidean space. This model, due to
H. PoiNcArRE, W. KILLING, G. DARBoOUX and J. WELLSTEIN, is
based upon an «absolute» euclidean sphere £2; non-euclidean
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«planes » are then represented by euclidean spheres orthogonal
to Q, «lines » by euclidean circles orthogonal to £, and «points»
by couples of points inversive with respect to 2 [1; II, 40]. The
measurement of angles is throughout euclidean; isometric trans-
formations are all spatial Moebius mappings which leave invariant
the absolute sphere Q. If the radius of 2 is real, the geometry is
hyperbolic, if the radius is purely imaginary, the geometry is elliptic.

Within the pencil of spheres orthogonal to the family of sphercs o
we let correspond to any (real) sphere 2

(5.1) 2y 422 nt=2dz

the orthogonal sphere (2
(5.2) 22y 22 = 4 2n%2/d .

The upper sign is to be taken in the elliptic case (Section 2), the
lower sign in the hyperbolic case (Section 4). Consequently all
spheres ¢ and the single sphere X are to be considered as «planes »
in the sense of the non-euclidean geometry based upon £; this
geometry is elliptic in the first case, and hyperbolic in the second
case. Thus the torus @ enveloping the spheie family {¢} may be
interpreted as a «cone of revolution » with the vertex (C, D). The
inversive euclidean circle-pair (¢,g) common to @ and 2 is the
conformal representation of a non-euclidean «circle ».

Bach «plane » ¢ cuts the «plane» X in a «line» ¢ tangent to
the «circle » (¢, ) and represented by a euclidean circle orthogonal
to Q. As our tractriz b—(2.13) or (4.7)—is an orthogonal trajectory
of the circle family {t}, it can be considercd as a mon-euclidean
involute of the cirele (¢,q). Thus we have

THEOREM 5. — Any euclidean spatial tractriz of a circle, if it is
of clliptic or hyperbolic type, may be interpreted as conformal re-
presentant of a non-euclidean involute of a cirele, in the sense of elli-
ptic or hyperbolic geometry respectively.

There is yet another possibility of non-euclidean interpretation.
If we consider as abolute the sphere £,

(5.3) 24y 2= Lt

—the upper sign belonging again to the elliptic case (Section 2), the
lower sign to the hyperbolic case (Section 4)—, all spheres 2, making
right angles with £, represent «planes». The torus @ is now to
be considered as a Clifford surface,i.e. a surface of constant distance
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from the axis 2 [1; IT, 55]. Each sphere ¢ is one component of the
conformal representant of a non-euclidean «sphere » which touches
the Clifford surface @ along a meridian; the second component G,
inversive to ¢ with respect to £,, belongs also to the set {c} and
is identical with the sphere opposite to ¢. The «centers» of the
«spheres » (o, G) are situated on a «line» [, represented by the
circle

(5.4) 2+ y:4+nt=0, 2=0.

Therefore any (plane or spatial) euclidean tractrix b of the
circle a (2.1), being an orthogonal trajectory of the family of «equal
spheres » (0, ) which are centered on a «straight line» I, may be
considered as a mon-euclidean tractriz of a line. All these curves
are « plane » and—for a fixed length of the generatingline segment—
« congruent » to each other. The tractrices on two different « planes »
2., 2, can be interchanged by «reflection » and therefore are in-
versive to each other in euclidean sense.

THEOREM 6. — All euclidean tractrices of a circle, if they are of
elliptic or hyperbolic type, may be interpreted as conformal re-
presentants of non-euclidean tractrices of a straightline. In the elliptic
case the geometry is hyperbolic, and the guide line is ideal, in the hyper-
bolic case the geometry is elliptic.

6. — Parabolic case.

When the generating line segment AB is equal to the radius
of the guide circle & (m = 1), the unit spheres ¢ touch the z-axis
at the origin 0. The conic points € and D of the enveloping torus @
are confounded with the center O which is now a biplanar double
point.

The inversion P — P* with center O and power 2, described by

(6.1) a*=2x/Q, y*=2y/Q, *=22/Q with Q=& y*+?2*,

changes the spheres ¢ into planes ¢* tangent to the unit cylinder
of revolution @*: x? 4 y*= 1. Any tractrix b of the considered type,
being an orthogonal trajectory of the sphere family {c}, is therefore
transformed into an orthogonal trajectory b* of the set {d*}, i.e.
an involute of a circle with radius 1:

(6.2) 2% = cosu + usinu, y*=sinu—wucosu, =*=c.
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Transforming back this curve by means of (6.1), we obtain the fol-
lowing parametric representation (in homogeneous coordinates) of
the tractriz b:

2o=1+ ¢+ ut,

2y == 2(Cco8 u -+ u sin u)
(6.3) 1 ( ’

@, = 2(sin u —wu cos u) ,

= 2¢.

Il

For ¢ #0 this curve is situated on the sphere 2 with the equation
(6.4) e(x? + w2 + a3) = 2x005;

it has the radius r = 1/¢ and touches the plane ;= 0 of the circle
a at the center 0. The tractrix b (6.3) has cne cusp (fcr u= ()
and an asymptotic point at the origin 0. The central projecticn cf
the tractrix b from O onto the plane z = z;/x,= ¢ is identical with
the circle involute b* (6.2).

THEOREM 7. — In the parabolic case any spatial tractriz of a
cirele is inversive to the involute of a circle, and collinear to a helix
on a paraboloid of revolution.

The proof of the second part of the theorem would follow the
way in Section 4.

The polar cone of the tractrix b (6.3) has its vertex in the center
M(0, 0, 1/¢) of the supporting sphere X (6.4). Its base curve in the
plane z= 0 is to be found as in Section 3; the polar equation
of this spiral reads:

(6.5) R=2/(1—c*—u?).

BIBLIOGRAPHY

[1]1 E. Bompiani, Metriche non-euclidee, Roma, 1951/52.

[2] W.KAUTINY, Zur Geometrie des harmonischen Umschwungs, Monatsh.
Math., 60 (1956), pp. 66-82.

[3] G. Loria - K. SCHUTTE, Spezielle algebraische und transzendente ebene
Kurven, Leipzig/Berlin, 2 Aufl., 1911.

[4] W.WUNDERLICH, Uber die Schleppkurven des Kreises, (sterreich.
Akad. Wiss. Math.-Nat. K1. S.-B. IIa, 156 (1948), pp. 155-173.

[5] W.WUNDERLICH, Beispiele fiir das Aufireten projektiver Boschungslinien
auf Quadriken, Mat. Tidsskr. B., 1951 (1951), pp. 9-26.

Pervenuta alla Segreteria dell’ U. M. 1.
il & aprile 1975

,,Monograf” - Bologna - Via Collamarini 5




	CCF13102010_00093
	CCF13102010_00094
	CCF13102010_00095
	CCF13102010_00096
	CCF13102010_00097
	CCF13102010_00098
	CCF13102010_00099
	CCF13102010_00100
	CCF13102010_00101
	CCF13102010_00102
	CCF13102010_00103
	CCF13102010_00104

