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Abstract

The paper develops elementary formulas for the synthesis of straight-line linkages of
Watt's type by optimizing a quintic which approximates the flat part of Watt's coupler
sextic.

1. Watt’s Sextic

To LEAD the end of the piston-rod of his steam-engine approximately along a rectilinear segment,
James Watt in 1784 used a coupler curve generated by a 4-bar linkage LABM with equal
rockers LA = MB = a[1,2,3]. The center C of the coupler AB =2b describes a sextic ¢ which
has the shape of the digit 8, if 2b < LM and 2|a — b| < LM <2{a + b). Each one of the two
branches passing through the inflection node O in the middle of the fixed base LM can serve, in
a certain neighbourhood of O, to approximate a segment of a straight line. Watt is said to have
been prouder of this detail of his steam-engine than cf the machine as a whole.

The simplest and most natural proposal for a good approximation consists in using a linkage
which in its initial position "LAoBoM forms right angles at A and B, (Fig. 1), as then the coupler
curve ¢ has a 5-point contact at Co= O with the ideal straight line AoB, (viz. Section 4). In
principle this idea belongs to Burmester theory which asks for the closest possible contact
between the ideal line and an approximating curve in a certain point. Now just in kinematics it
is well-known that better results can be obtained by Chebyshev theory which aims to minimize
the maximal deviation from the ideal line, by allowing the approximating curve to reach the
maximal deviation as often as possible in a certain interval. Hence the flat branch of Watt’s
coupler sextic ¢ should be forced to remain between two parallel lines, touching each one in
two points and cutting it in a third point (Fig. 3).

An attempt in this direction has been made by Bloch[4], but does not appear quite
satisfactory, as the straight border lines are replaced by hyperbolas. A decisive progress has
been achieved in a recent paper of Folkeson[5], but as the author uses a computer program to
calculate the coordinates of a sufficient number of points of the coupler curve, his paper
contains no formulas which could serve for the synthesis of optimized Watt mechanisms.

Figure 1. Watt’s straight-line linkage.
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To approximate, by a Watt sextic, a segment of the x-axis of a cartesian frame (O; x, y), let
us locate the fixed pivots at L(—e, f) and M(e, —f). Then we replace the 4-bar linkage LABM
by a 5-bar linkage LICJM, whose arms LI = MJ = b are parallel to the coupler AB and whose
links IC = JC = a are parallel to LA and MB, respectively (Fig. 2). To provide a constrained
motion of the S-bar linkage, the arms LI and MJ have to be driven simultaneously in such a
way that they conserve their parallel position; this might be achieved by an auxiliary paral-
lelogram.

/
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Figure 2. Different generations of Watt’s sextic.

As the triangle IJC is isosceles, the radii vectores OC = r and OI = R are orthogonal and
connected by r*+ R?= g ‘This induces a remarkable correspondence I- C which maps the
circular path i of I onto the path ¢ of C. This planar transformation, defined by OI LOC and
IC = a (Fig. 2), allows an elegant graphical construction of the coupler curve c.

Denoting the coordinates of C with x and y and those of I with X and Y, the equations of
the involutary algebraic two-to-two transformation I <> C (of degree 4) read

x=1Y,y=—AX with A2=“—2-I"3,&2, R=X+Y? (L1
Applying the inverse formulas

X=-py, Y=px with ;ﬁ=ir',—'2, P=x+y 12)
for the mapping of the circle i, described by

(X +eP+(Y-f)=b’ ' (1.3)

we obtain the equation of the coupler curve ¢

(+ Y3+ y - P +4(fx + ey (x*+y*—a)=0 with d’=a’-b>++f.
: (1.4)

This equation shows that ¢ is a sextic, i.e. an algebraic curve of order 6. The quantity d may be
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interpreted as the central distance of two isolated double points of c, situated on the base line
LM (fx + ey = 0) which is an axis of symmetry for c.
Representing the circle i (1.3) in parametric form by
X=bcosu—e, Y=bsinu+f, (1.5)
and introducing the auxiliary angles v and w of Fig. 2 by
tanv = X/Y, cosw =R/a, s ; (1.6)
we obtain by application of (1.1) a polar representation of ¢

x=rcosv, y=—rsinv with r=asinw (1.7)

This simple procedure to calculate points of the coupler sextic is similar to that used by
Folkeson[5], but perhaps somewhat more convenient.

2. Approximating Quintic :
For small values of y we may neglect higher powers of y in eqn (1.4) of Watt’s coupler
sextic c¢. Thus we get a quintic ¢ :

x(x? = d?? +4f(fx + 2ey)(x*— a*) = 0. 2.1

It approximates the flat branch of c. The coincidence of the curves ¢ and ¢ is good, as they
have in common five precision points Co, Ci, ..., C4 on y = 0 (Fig. 2).

l=2t=4p ———1
Figure 3. Optimized approximating quintic.

The rational quintic ¢, symmetric with respect to the origin O, is now better apt for applying
Chebyshev’s optimization principle. The fundamental condition that ¢ has to remain between
two parallel lines y = +h within an interval —t = x = t, touching them at points with abscissas
+t, and *t, (Fig. 3), requires that eqn (2.1) for y = h is equivalent to

(x ==t (x+87=0 2.2
or

x=t)(x*+px—q)’=0 with p=t,—t, q=tb. (2.3)
Hence corresponding coefficients of the polynomials

x*+(@f2 =2d%)x* + 8efhx® + (d* — 4a’f*)x —8a’efh =0 24

and

X+ @Qp-x*+(p2-2a-2pt)x* — 2pq + p*t —2qt)x* +(¢* + 2pqt)x — ¢t =0
i Q.5)
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must be equal. This yields the following relations

t=2p, 2d*-4f*=3p*+2q, 4efh=p(q-p?),

(2.6)
d*-4a’f’=q@p>+q), 4a’efh =pgq’.
Choosing the values of p, q and h (all positive), we get
2
o , @
2 .
=4 +p£1211pzq)\/q, f2=%(2d2_3p2_2q), 2.8)
SR
e=P(‘ifhP )! b2=a?—d*+ e+ f2 2.9

Provided that h is small, the coupler sextic ¢ (1.4) with the data above will represent an almost
optimal straight-line approximation, as-the corresponding quintic ¢ (2.1) has the maximal
deviation =h from the ideal line y = 0 on a length of

1=2t=4p. (2.10)

Nevertheless there has to be paid attention to some restrictive conditions.

3. Restrictive Conditions
The condition p>< q for a real value of a (2.7), together with the condition g <2p® for
t, <t =2p, leads with respect to (2.3) to the equivalent inequalities

1,2 =36t + 12 <0<2t,2 - Stot, + 21,2 @3.1)

Hence the quotient t,/t, > 1 is restricted to the interval
2 <%<%(3.+\/5) = 2.6180. (3.2)
1

Other conditions were mentioned at the beginning of Section 1 with 2b < LM and 2|a — b| <
LM <2(a +b). The first of them, equivalent to b?><e’+f or a®’<d? is already satisfied
because of the due choice of the sign of the square root in (2.8). The second condition,
necessary and sufficient for the existence of a real triangle LAC,, is equivalent to 2ab <
[2a* - d?| and requires (after elimination of b)

& <2aVe+ 1 (3.3)
With respecf to eqns (2.8) and (2.9) this relation yields
2 ) 2 IS

2P rag 9y . e P 94-p) G.4)

4q 4f4p™+q)

and thus provides a lower bound for e and an upper bound for the wanted maximal deviation h.

4. Examples
In order to get simple illustrative examples for the theory, with integer values of ¢, and #,,
we may assume q — p> = 1, hence

t|2—3t1f2+t22= —1. (41)
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Starting with a known solution of this diophantic equation, say t, = t, = 1, we proceed to a new
solution t{ = £, t5 = t3 satisfying analogously

12 =3t +ti= —1. 4.2
The difference of eqns (4.1) and (4.2) leads to the recursion formula
t3= 3t2 =it (43)

Operating in this way we obtain the following table:

tl t2 p 4 q=a d f eh= p/4f €min hmax

1 2 1 2 2 0.5 0.5 0.866 0.5774
2 5 3 10 13.263 8.729 0.0859 1.072 0.0801
Jai3 8 65 91.041 63.747 0.0314 1111 0.0283

13 34 21 442 624199 440.750 0.0119 1.117 0.0107

Consecutive values of #;, t, and p belong to the well-known Fibonacci sequence connected with
the golden ratio. The value of en;, (3.4) tends towards 1/5/2 = 1.118. Figure 3 is based upon the
second line of the table.

Another possibility to obtain simple values consists in putting

tz—'l =0'(t1_ 1). (44)
This substitution, introduced in eqn (4.1), yields the parametric representation

=0'2—20'+2 =24:!'2—2a'+1
T 30+1” P -3+l

4.5)

Thus any rational value of o provides rational values of f, and #,. For instance o =5 gives
t,=17/11 and t,=41/11. Deleting the common denominator 11, we arrive with ¢, =17 and
t, =41 (not contained in the table) at p =24, g =697 and a = 697/11.

To show the practical use of our formulas let us reconsider—like Folkeson[5]—a problem of
Walther and Wagenzink [6], who asked for a Watt linkage to be applied in a modern manufacturing
machine. The authors needed an approximate straight-line motion over a length of about
[ = 100 (mm), prescribing the length a = 150 of the rockers. At first we have from eqn (2.10):
p = I/4=25; then by solving the quadratic eqn (2.7)

a

g == Va?—4p?) =75(150 — 100V/2) = 643.3983.

With eqns (2.8) we proceed to
d =2083452, f=144.6147,
and then with eqns (2.9) to
| eh = pq’lda’f = 0.7931, b2 ¢? = a?—d*+ f* = 5.6995.
Choosing now—Ilike the authors—the coupler length v;/ith 2b =60, we get
e =29.9049.- |
This value satisfies the condition (3.4) and proyides a maximal deviation of

h =0.0266
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for the approximating quintic ¢. The effective deviation of the coupler sextic ¢ might be
controlled by calculating some characteristic ordinates y by means of eqns (1.1); we find in the
neighbourhood of the maximum: x; = 15.778, y1=0.0267, and in the neighbourhood of the
minimum: x, = 40.778, y,= —0.0265. To guarantee the full length [ of the approximation also
for the sextic ¢ it would have been better to choose p somewhat greater than I/4, say p = 26. In
any case the obtained approximation is essentially better than that of the not optimized linkage
in[6]; corresponding to the choice of the pivot coordinates e = 29.692 and f=145.710 in [6], the
deviation amounts there to ym., = 0.077.

By the way, Watt’s symmetric 4-bar linkage always might be replaced by another double-
rocker linkage, derivable by means of Roberts’ theorem and sometimes called the grasshopper
mechanism of Evans[3]. In Fig. 2 this is achieved directly if the midpoint H of the bar IC is
connected to the origin O by a single bar of length a/2. Then the replacing mechanism consists
in the 4-bar linkage OHIL which also leads the coupler point C along Watt’s curve c.

Taking the opportunity to compare the qualities of Burmester’s and Chebyshev’s optimization
principles, let us finish by considering the classical mechanism of Fig. 1

a=f, b=e | (4.6)

The eqn (1.4) of the generated coupler curve c—which now has a higher inflection point at
O—takes the form

( + y)(x* + y2 - 202 + 4(ax + by) (x> + y* — a?) = 0. 4.7
The flat part of ¢ is approximated by a quintic ¢ (2.1), represented now by
i x’ L
y " 8ab(a’-x?) 8a°h° )

Hence the deviation error h and the length I of the approximation interval —l[2= x <2 are"
related by

256a’bh ~ I°. 4.9

With the data of the numerical example above, namely a = 150 and b =30, we would get for
I =100 a deviation of at least h ~0.386 (in fact h = 0.444), whereas the deviation h = 0.0266 of
the optimized mechanism could be ensured only over a length of [ ~58.6 (precisely | = 58.1).
This shows very clearly, that Chebyshev’s principle, being a global one, provides remarkably
better results than Burmester’s local principle.
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ANGENAHERTE OPTIMIERUNG DES WATTSCHEN GERADFUHRUNGSMECHANISMUS

W. Wunderlich

Kurzfassung - Zur angenﬁherten/Geradfﬁhrung nach Watt dient bekanntlich eine achterfdrmige Koppelkurve,
die vom Mittelpunkt der Koppel eines gleichschenkligen Gelenkvierecks beschrieben wird. Eine

genauere Uﬁtersuchung dieser symmetrischen Sextik fiihrt zunichst auf eine neue Konstruktion derselben
und liefert auch numerisch vorteilhaft auswertbare analytische Darstellungen (Abschnitt 1). Zum

Zweck der Optimierung nach dem Tschebyschewschen Prinzip wird dann der flache Teil der Sextik durch
eine bequemere Quintik angendhert, fiir welche die Bedingungen abgeleitet werden, dass sie zwei
parallele Doppeltangenten aufweist (Abschnitt 2). Nach Hinweisen auf einschrinkende Bedingungen

fiir die Wahl der verfiigharen Parameter (Abschnitt 3) wird schliesslich an Hand von Beispielen die
praktische Anwendung der entwickelten Formeln zur Synthese von Wattschen Geradfiihrungen mit

gewiinschter Linge und Giite gezeigt (Abschnitt 4).
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