Mechanism and Machine Theory Vol. 16, No. 6, pp. 611-620, 1981 0094-114X/81/060611-10$02.00/0
Printed in Great Britain. Pergamon Press Ltd.

Mechanisms Related to- Poncelet’s Closure Theorem

W. Wunderlicht
Dedicated to Prof. O. Bottema, on the occasion of his 80th birthday
Received for publication 13 March 1981

Abstract

A closed equilateral polygon, whose vertices alternatively lie on two fixed circles, is
moveable: The vertices can move along the circles without change of the common
length of all sides. This phenomenon leads to a remarkable family of overconstrained
linkages and is of interest for certain ball-bearings. In the case of coincident or parallel
circle planes an algorithm is developed which allows the side length of such polygons to
be calculated.

1. Introduction

LEeT k, [ be two coplanar circles with centers M, N and radii a, b, respectively; the central
distance MN is denoted by c. Starting from a point A, on k, we construct, with a given side
length d, an equilateral zig-zag polygon A,B,A,B, ... having its vertices A; on k and B; on I If
this polygon closes after 2n steps (A,+; = A,), without being doubly covered, then there exist a
continuous set of such polygons: a closed 2n-gon will always be obtained, wherever the starting
point on k may have been chosen. b
This remarkable fact was first discovered by Bottema[l]. Astonishing enough, the closure
phenomenon holds also for circles k, [ with an arbitrary position in space. In its general extent
this closure theorem was stated by Black and Howland[2]; they confirmed it by an analytic

reasoning based on a certain differential equation. An adequate proof was then given by °

Hohenberg[3], who used an appropriate (2,2)-correspondence and thus pointed out the
algebraic character of the problem; he considered also equilateral zig-zags between a circle and
a straight line[4] and between two lines[5]. In a short note[6) the author showed by means of
descriptive geometry how the problem might be lead back to the classical closure theorem of
Poncelet (1822), mentioned already by Bottema. A simplified procedure will be presented here.

2. Proof of the Closure Theorem in the Planar Case

Using Cartesian coordinates x, y in the common plane 7 of the circle pair and locating the
centers at M(0,0) and N(c, 0), the circle k may be represented in parametric form by

xX=a-cosu, y=a-sinu, 2.1
whereas the circle [ will be described by its equation

(x—c)l+y*=b> (2.2)
An auxiliary circle s with radius d and centered at a point A on k has the equation

(x—acos u)’+(y—asinu)’=d> (2.3)
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The circles / and s intersect in two points B, B situated on the common chord or radical axis g,
whose equation is obtained by forming the difference of (2.2) and (2.3)

(a cosu—c)x+asinu-y=e2=%(az+b2—c2—d2). (2.4)

With varying parameter u the point A moves along the circle k and the corresponding line g
generates an envelope i (Fig. 1). The contact point H of g and & is determined by the
derivative of (2.4) with respect to u, i.e. (after division by a)

—sinu-x+cosu-y=0. 2.5)

From (2.4) and (2.5) we obtain the parametric representation of h

e*cos u e*sin u
ey = (2.6)
a-—ccosu a-—ccosu
The equivalent polar equation

2

e
pE———F— 2.7

a—ccosu

shows that the envelope h is a conic with one focus at the origin M, and the numerical
eccentricity c/a.

Applying this result to the original problem, we see that the secondary polygon B;B,B. .. is
inscribed in the circle / and circumscribed to the conic . Now the famous poristic theorem of
Poncelet states that a plane polygon, inscribed in one conic and circumscribed to another,
closes either ever or never (“‘aut semper aut numquam”)—independently of the starting point
and always after the same number of steps. This means in our case: If there exists a (non
degenerate) closed n-gon B,B,. .B,, whose vertices lie on the circle / and whose sides touch the
conic h, then we may start from any point of / and, successively drawing tangents to h, we
always shall obtain a closed n-gon inscribed in / and circumscribed to h. It is evident that each
of the polygons BB, .. B, easily can be completed to an equilateral 2n-gon A,B; .. A, B, which
has its vertices alternatively on the circles k and /.

Expressing the closure phenomenon in other words, we may say: If in the course of a first
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trial the zig-zag polygon does not close after 2n steps, it would be in vain to try again with
another starting point.

There still remains the problem to determine the appropriate side length d for given
quantities a, b, ¢ and a prescribed number 2n of steps. Having once found a fitting value of d,
the polygon will close independently of the starting point. Hence the polygon can move along
the circle pair, changing only its angles.

Figure 2 shows a number of Poncelet triangles belonging to the equilateral hexagon of Fig.
6.

3. General Case

Let us now consider the general case of two arbitrary circles k, [ in space, supporting the
vertices of an equilateral zig-zag polygon A,B,A,B, ... with side length d. We introduce the
sphere A which passes through / and has its center in the plane 7 of k.t The two polygon sides
issuing from an arbitrary point A of k have their endpoints B, B on | and on the auxiliary
sphere 3 with center A and radius d. Consequently they lie in the radical plane y of A and 3
which contains the intersection circle of these spheres. As vy is perpendicular to m, the
orthogonal projection onto 7 leads just to the configuration of Fig. 1 (where the circle / is to be
replaced by the great circle of A in 7). Applying now the result of Section 2, we see that the
base line g of y envelopes a conic & when A varies along the circle k.

This means for our problem that the orthogonal projection BiBj... of the secondary
polygon BB, ... is circumscribed to the conic & and inscribed in that ellipse /" which appears
as the image of the circle /. Consequently, due to Poncelet, we have the closure phenomenon
again, at first for the image polygon B{Bj.. B,, then for the polygon B,B,..B, itself, and
finally for the equilateral polygon A,B,..A,B,. Thus the vertices of a closed equilateral
polygon indeed can move along the circles k and /. '

4. Applications

A plane linkage consisting of 2n bars represented by the sides of a closed polygon
AB,..A,B,, and with additional n bars connecting all joints A; to a fixed pivot M, and
another n bars connecting all B; to a second pivot N, in general will be rigid: Together with the
base MN we have 4n + 1 links and 2n +2 joints; hence, due to Griibler’s formula, the formal
degree of freedom has the value f = 0. —If, however, the mentioned polygon is equilateral (side

n=3;a=2,b=4,c=1
Figure 2.

1The exs:eplional case of orthogonal circle planes needs a somewhat modified treatment, as then the sphere A would
degenerate into a plane.
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length d), all spokes MA; have equal length a and also all spokes NB; have equal izngth b (Fig.
3), then, due to Bottema’s theorem, the linkage will allow a constrained motion, and thus the
true degree of freedom is f' = 1[3].

The said linkage contains two series of kites: n kites MA;B;A;,, with side lengths a and d,
and n kites NB;A;,,B;., with side lengths b and d. The linkage also may be considered as an
aggregate of 2n four-bars MA,B;N and MA;,,B,N with common base MN. Provided that all
these four-bars are double-cranks (as in Fig. 3), the linkage can perform a complete revolution.
Mainly this case will be considered in the following developments; the respective conditions
read (with positive values of a, b, ¢, d)

b-a>c, a+bxtc>d. 4.1)

A series of equal balls with radius r centered at the vertices A; of a Bottema polygon
AB,..A,B,, and a second series of equal balls with radius ' about the centers B; will
constituté a twin bearing if r+ r' = d, as then neighbouring balls remain in contact during the
motion of the polygon (Fig. 3).

A slight modification of both of the mechanisms (the spoke linkage and the twin ball-
bearing) is obtained by arranging the circles k and / in parallel planes. Although the equilateral
zig-zag polygon is now a spatial one, the closure theorem still holds (due to Section 3, or simply
because of the fact that the orthogonal projection A,B] .. A,B, of the polygon onto the plane 7
of k is an equilateral polygon again, with side length d' = V(d? - p?), where p is the distance of
the circle planes). The joints of the spoke linkage may still be cylindrical hinges, and the
corresponding twin bearings can be derived in the same way as before; Fig. 3 may be
considered as a cross-section through the contact points of the balls. Thrust bearings with
coaxal ball series are well-known, but it is a remarkable statement that devices of this kind are

> |

n=6;a=6,b=8,c=1,d=421

Figure 3.
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working also when the ring axes are parallel or even skew. This unexpected phenomenon was
the motive for the investigations of H.C. and B. Howland [2].

Spoke linkages with cylindrical joints and twin ball-bearings with intersecting axes may be
derived from circle pairs k, / situated on a common sphere or on concentric spheres.

5. An Algorithm

Returning to the simple case of coplanar circle pairs k, [ we have to state that the postponed
problem of establishing closure conditions, relating the quantities a, b, ¢, d for prescribed values
of n, is still open. In algebraical form such conditions were explicitely given by Hohenberg[3]
for n =2,3,4 and 5 only; his result for n = 6 has not been published. For greater values of n an
iterative process may serve to find the numerical value of d, when a, b and ¢ are known.

Using the parametric representation (2.1) for the circle k and an analogous representation
for | (Fig. 4), the points A; and B; are determined by

Al x;=acos u, yi = a sin u;;

B;: xi=bcosv;+c, yi;=bsinuv;. 5.1

The distance formulas for consecutive segments A;B;, BiA;; and A;,;B;y; (all of length d) after
simple transformations furnish the equations

ac cos u; — be cos v; + ab cos (u; — v;) = f* =%(a2+ b*+c*—d?),

ac cos Uz, — be cos v; + ab cos (u — v;) = f2, (5.2)

Iz

ac cos U — be cos vy + ab cos (Ui — i) = 2.

Forming differences and paying attention to u;,, # u; and v;,, # v; we get the relations |
!

. . ! 1
csing;+bsin(p;—v;)=0 with ¢ = E(u,- + ui1), ‘

¢ sin (p,' + a sin (u,'.H = (p,) =0 with lp,' = %(D,‘ + l),‘+1). (53)

1

B'+7

Figure 4.
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They finally lead to appropriate recursion formulas

PR 1 1. MRS S
YT hcosvi+c T @i~ >
a sin u;
tan ¢ = ——— a Vi1 = 20 — s (5.4)

acos Ui —C’

Starting with a chosen initial value u; we calculate v, by means of the first eqn (5.2) for
i=1. As soon as we have decided between the two possible values of vy, the recursion
formulas (5.4) successively and without ambiguity furnish ¢y, u,, 1, v etc. The corresponding
polygon A;BA,B, ... closes after 2n steps (with A, = A)), if

Uy = Uy +2Am (A = integer). (5.5)

By elimination of all angles which occur in the equations used one could arrive (after hard
work) at an algebraic closure condition containing only the lengths a, b, ¢, d. For n> 2 more
than one condition may be found, as not all possible values of A in (5.5) lead to the same result.
Hohenberg[3] proceeds in a similar way, using recursion formulas for the abscissas x; of A; and
x' for B,

6. Closure Conditions

After all it will be sufficient to execute the algorithm of Section 5 with the special starting
values

2

_ c
u; =0, v;=arccos —’(a—c)b' 6.1)

With respect to the axial symmetry of the corresponding polygon the closure condition (5.5) and
the elimination process may be considerably simplified. For n even (n=2m) the condition
reduces to

um+l = A”T (6-2)

A corollary of Poncelet’s theorem states that in this case the diagonals A;A;.n (indices modulo
n) of the moving polygon constantly pass through a fixed point P on the line MN; similarly all
diagonals B;B;.,, pass through another fixed point Q on MN.

For n odd (n =2m + 1) the closure condition requires

Upy = AT (6.3)

Under the assumption (4.2) closure after one single circuit corresponds to A =11in (6.2) or (6.3).

The above-mentioned elimination process will be executed in the cases n = 2 and n =3 only
(Sections 7 and 8). For larger values of n the procedure becomes increasingly intricate. Besides
Hohenberg’s closure conditions for n =2-5[3] no explicit results are at hand. Therefore, it
seems necessary to use the numerical method. As the algorithm (5.4) is easily performed with
the aid of a pocket computer, it is not difficult to find the required value of d for given data
a, b, ¢ by means of trail and error, systematically reducing to zero the deviation of #,,4+1 OF Vi1
from the prescribed value . In better computers even a suitable program might be installed. In
this way the side length of the dodecagon in Fig. 3, belonging to a =6, b =8, ¢ =1 and n'=06,
was found to be d =4.2088. (

7. Equilateral Quadrangles
In the simplest case, n =2 (m =1), the polygon A;B;A,B, is a rhombus (Fig. 5). Starting
with u; =0, we have to attain u, = 7; see (6.2). From (5.4) we get ¢1 = m/2 and cos vy = — c/b.
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Comparing this value with that of (6.1), we obtain the closure condition ¢*= f* or
a’+b?=c*+d?, (7.1

consonant with the result of Bottema[1] and Hohenberg[3].

Figure 5 shows the spoke linkage of Section- 4, determined by a=2, b=4, c=1 and
d=V19=14.3589. The linkage consists of 9 bars and is a combination of two Peaucellier
inversors which map each of the circles k and [ onto itself. According with a remark in Section
6 the diagonals A,A, and B,B, of the moving rhombus pass through the fixed points P = N and
Q = M, respectively. These points are the centers of the inversions A;<>A, and B~ B,. By the
way, the mechanism is a particular case of an overconstrained nine-bar linkage with six triple
joints which are distributed three by three over two orthogonal lines[7].

8. Equilateral Hexagons

In the case n =3 (m =1) of closed equilateral hexagons A;B;A,B,A3B; the initial value
u; = 0 requires v, = 7; see (6.3). From the first and the third of the relations (5.2) we get

_f-ac _fi=bc
cos vy = G-ob COS U, alc— by 8.1)
Instead of the second eqn (5.2) we take the first recursion formula (5.4); it says, with respect to
8.1)

u a—c)b .
tan—23=(f2fc)23m 01 (8.2)
By means of
sin v, = (a——ch with w?=(a - ¢)b>~ (>~ ac)’ 8.3)
we find
Wh__Ww
tan = oo 8.4)

\_’/
n=2;a=2,b=4,c=1, d=436

Figure 5.
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hence

(f? - c¥?— w?

COSUr=7"F/3 33 . 3
2 (f2_ 62)2+ w2

(8.5)

Comparing the expressions for cos u, in (8.1) and (8.5), we obtain a preliminary closure
condition in the form

(f*+ ab — ac — be)(f*— ¢+ (f*— ab + ac — bc)w? =0
with  w?=(f*+ ab — ac — bc)(ab + ac — be — f2). (8.6)

Division by the common factor
f+ab-ac—be=y(a+b-c+dNa+b—c-d) 8.7)

excludes only the trivially degenerating solutions a +b — ¢ +d =0. The remaining definitive
closure condition may be written in the form

(ab — c®(ab —d* + ab(a — b)* = 0; (8.8)

it is equivalent to formulas of Bottema[1] and Hohenberg[3].
Figure 6 shows a corresponding spoke linkage determined by a=2, b =4, ¢=1 and
d =V/(88/7) = 3.5456. Changing the sign of a, we get another hexagon with side length
d =V(24) = 4.8990; it is supported by the same circle pair, but closes after two circuits (x = 2).
A peculiar situation arises from the supposition a = b: In this case we see from the closure
condition (8.8) that either

a=b=c, d arbitrary (8.9)
or
a=b=d, c¢ arbitrary. (8.10)

The first possibility, pointed out by Hohenberg[8] and illustrated in Fig. 7, means that under
the assumption a = b = ¢ any equilateral polygon will close after six steps, whatever the side

n=3; a=2, b=4,c=1,d=355

Figure 6.
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Figure 7.

length d may be. So in this case there do not exist closed equilateral polygons with number of
sides other than six.

The second possibility a = b = 4 leads to spoke linkages looking like the parallel projection
of a cube (Fig. 8), and the base length ¢ may be altered. After deleting the base MN, the
mechanism will have the degree of freedom f' = 2.
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MECHANISMEN, DIE ZUM PONCELETSCHEN SCHLIESSUNGSSATZ
IN BEZIEHUNG STEHEN

W. Wunderlich

Kurzfassung - Ein geschlossenes gleichseitiges Polygon
A1B1..Aan, dessen Ecken abwechselnd auf zwel Kreisen k ung 1
liegen, ist beweglich: Seine Ecken konnen auf den Kreisen
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wandern, ohne daB sich die gemeinsame Linge 4 der Seiten
dndert. Dieses Phidnomen, das bei beliebiger Raumlage der
Kreise besteht, 148t sich auf das klassische SchlieBungs-
theorem von Poncelet zuriickfilhren, welches besagt, daB das
ebene Problem, n-Ecke zu finden, die einem gegebenen Kegel-
schnitt eingeschrieben und einem zweiten gegebenen Kegelschnitt
umgeschrieben sind, entweder keine oder aber unendlich viele
Losungen hat. Es zeigt sich, daB die sekundiren Polygone
A1A2..An und 3182"Bn von Ponceletscher Art sind. Fir den
schon von Bottema betrachteten Fall komplanarer Kreise k und 1
wird ein Algorithmus mit trigonometrischen Rekursionsformeln
(5.4) entwickelt, der die numerische Ermittlung der Seiten-
lange d aus den Kreisdaten a (Radius von k), b (Radius von 1)
und ¢ (Zentralabstand von k und 1) bei vorgeschriebener Sei-
tenzahl 2n gestattet. AbschlieBend werden die Annahmen n =2
und n =3 ausfiihrlicher besprochen. Die Beweglichkeit der
genannten Zickzack-Polygone filhrt auf bemerkenswerte Gelenk-
mechanismen und ist fiir Zwillings-Kugellager von Bedeutung.



