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Summary

A framework consisting of rigid rods which are connected in freely moveable knots, in
general is stable if the number of knots is sufficiently large. In exceptional cases, however,
the rodwork may allow an infinitesimal deformation. Due to a theorem of Liebmann, this
apparently metric property of existing shakiness in fact is a projective one, as it does not
vanish if the structure is transformed by an affine or projective collineation. The paper
presents a new analytic proof of this remarkable phenomenon. The developments are
applicable also to polyhedra with rigid plates and to closed chains of rigid links.

1. Introduction

Let us consider a framework consisting of » rigid rods connected at m knots.
The connections are assumed to be freely moveable; that means that the joints
are cylindrical for plane linkages and spherical for spatial structures.

The rod lengths impose 7 conditions on the 2m or 3m knot coordinates.
Taking into account the number of displacement variables — 3 in the plane,
6 in space — we see that the degree of freedom with respect to deformability of

the structure is
foa=2m—m—3 or fy=3m—n—86, (1.1)

respectively. Consequently the rodwork will be moveable if f > 0, and (in general)
rigid if f < 0.

In the latter case the shape of the framework is determined by the rod lengths,
assuming the topology of the structure to be known. One may freely choose 3 or
6 coordinates, respectively; the remaining 2m — 3 or 3m — 6 coordinates can be
calculated from n = 2m — 3 or n = 3m — 6 distance relations, provided they do
not contain any contradictions.

As these equations are quadratic, they may lead to more than one solution.
This means that the framework considered may admit several different con-
figurations. If two (real) configurations do not differ too much from each other, it
will be possible, if the rods actually have some elasticity, to force the structure to
“snap” from one position to the other one. Think for instance of a very flat
tetrahedron (m = 4, n = 6; f; = 0): Fixing a base triangle the tetrahedron may
snap from the original form to the mirror image with respect to the base plane.
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When, in a limit case, two neighbour positions of a rodwork coincide, we have
a “shaky” structure with infinitesimal deformability. As example take a tetra-
hewron with coplanar vertices: If three of them are fixed, the fourth will still
allow a small displacement perpendicular to the fixed plane; although its extent
is infinitesimal, it is in practice quite perceptible. — Such exceptional structures,
to be avoided for reasons of stability, have been studied by engineers and mathe-
maticians [2], [8], [9], [10], [11], [15], [16], [17]. Their application to problems in
geodesy were recently indicated by the author [13].

An unusual phenomenon occurs when the given system of distance relations,
in spite of f < 0, possesses a continuous set of solutions. In this case we have a
finitely moveable linkage, an ‘“‘overconstrained mechanism”. Take for instance
two equal triangles 4,4,4; and B,B,B; in the plane, connected by three bars
A;B; of equal length and direction (m = 6, » = 9); deviating from the formal
value f, = 0 the true degree of freedom is f," = 1, as the parallel cranks 4;B; can
perform simultaneous rotations about the fixed pivots 4;. — Classical examples
of overconstrained spatial mechanism are the “isogram’ (hinged skew parallelo-
gram) of G. T. Bennett [1], [4 (p. 193ff.)], [11] (m = 8, n = 20; f3 = —2, f;' = 1),
various closed hinged chains of more than four links [4 (p. 315ff.)], [7] and the
hinged octahedra of R. Bricard [4], [10] (m =6, n = 12; f; =0, f;" = 1). An-
other deformable rodwork, important in geodesy [14], consists of ten rods 4;B;
connecting four coplanar points 4; with six arbitrary points B; in space (m = 10,
n=24;f, =0, =2).

Obviously the (finite or infinitesimal) deformability of a framework seems to be
a metric property, as it depends on particular lengths of the rods. However, the
shakiness of a structure is in fact a projective property. This means that a shaky
structure, transformed by arbitrary linear transformations, will always produce
(at least) shaky structures again. Existing finite moveability, however, in general
will get lost under such transformations and reduced to shakiness only. — The
astonishing fact of the projective invariance of shakiness was firstly proved by
H. Liebmann [9], but on the assumption that there exists at least one triangle in
the framework. A new, somewhat more natural proof without restriction will be
presented here. The systematic use of velocity diagrams (‘“hodographs”), appealing
to the mind of the technician, will allow a quantitative judgment of the infinitesi-
mal deformations.

2. Hodographs

Let the position of a framework knot X with respect to a convenient fixed
system be described by non-homogeneous Cartesian coordinates z; (+ = 1,2 in
the plane, 7 = 1, 2, 3 in space). Assembling them in a column matrix &, the length s
of a rod X7 is determined by

=@ —y)=@@®—-y"x—y), (2.1)

where the symbol T denotes transposition.

In the course of a displacement of the knots their coordinates are to be con-
sidered as functions of a time variable ¢. The actual velocity vector of the knot X
is given by the derivative & = da/dt which defines a point X. The set of all points
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X,Y, ... constitutes a velocity diagram, shortly called the “hodograph”. If the
distance s = X Y is constant or at least stationary, we have § = 0 or, correspond-
ing to (2.1):

(@ — y)T (@& — ) =0. (2.2)

Hence the line segment XY of the hodograph is orthogonal to the rod axis X7Y.
In other words (Fig. 1): The velocity vectors of the ends of a rod have equal

components in the rod axis.

Fig. 1. Velocity diagram of a rigid rod

If a spatial rodwork is rigid, then, according to a fundamental theorem of
kinematics, its displacement as a whole at every instant may be considered as a
helicoidal motion. As such an instantaneous screw motion is composed of an
instantaneous rotation about a well defined axis and an instantaneous translation
along that axis, the hodograph will be contained in a plane perpendicular to the
instantaneous axis; moreover the shape of the hodograph will be directly similar
to the orthogonal projection of the framework onto the hodograph plane.

On the other hand, if there exists a three-dimensional hodograph fulfilling all
orthogonality conditions (2.2), or a plane hodograph that is not similar to the
orthogonal projection of the framework, this indicates (at least infinitesimal)
deformability. Infinitesimal displacements of the knots X, 7Y, ..., in direction and
extent corresponding to the position vectors of the hodograph points X, Y, ...,
will cause variations of the rod lengths XY ete. of higher order only.

For a plane structure the condition for infinitesimal deformability in its plane
is the existence of a plane hodograph which satisfies all orthogonality relations
XY | XY, without being similar to the framework.

Let us consider, as an example, the rodwork of Fig. 2: It consists of 16 bars

- A4;B; connecting the vertices of two rectangles 4,4,434, and B,B,B;B, with

common medians (m = 8, n = 16; f, = —3). As indicated by O. Bottema [3],
[12], this plane structure is a moveable overconstrained linkage (f;' = 1). Denoting
the knot positions by

Ay (uy, u), As(—uy, u2), Ay(—uy, —up), Ay(uy, —uz);

Bl(vl’ ’02)’ B2(_/Ul’ '02): B3<——’b‘1, —7)2)’ B4(7:17 _7)2)

(2.3)

| _ épd the rod lengths by

A;Bi = a, AiBi+1 == b, AiBi+2 = C, AiBi+3 =d (24)
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Fig. 2. Bottema’s moveable 16-bar linkage with 8 quadruple knots

(indices modulo 4), it can be shown that a® + c2 = b2 + d? and

Bt (2ut + 2t — 0 — o) + (@ — PPl B Pt

= 80,20,2(20,2 + 20,2 — a® — ¢?) + (2 — b?)P v + (b2 — a?)2 0,2 = 0.

This means that, fixing the coordinate axes, all eight knots will describe paths
which belong to a single sextic consisting of four equal ovals (Fig. 2). — In any
configuration of the linkage, the. hodograph defined by the points A, (i, ),
B, (#,, b;) etc. will show the same structure as the rodwork. The governing equa-
tions (2.2) prove to be equivalent to the linear system

vy, + w0y =4 ¥
Volly + ugty = 0, (2.6)
Uyt + Ustls + Vy0; + VD =0
which leads to the solution

Gyt Uy 2 Dyt Dy = Uy(Ug® — 0P Up(0,% — wy?) 1 vy (v — wp?) ¢ vy(uy® — 0%).

(2.7)

Fig. 2 is based upon the values u; = 4, up = 1, v; = 2, v, = 4 (a® = 13, b = 45,
¢ = 61, d? = 29); the hodograph on the right is constructed with 4, = 5, 4, = 1,
#, = —B/2, b, = —4, whereas on the left the velocity vectors, indicating the
infinitesimal displacement of the knots, are represented to a reduced scale.

It may be remarked that the orthogonality relationship between a shaky
framework and its deformation hodograph is of involutory character. Conse-
quently the hodograph, if not degenerate, represents a second shaky structure of
the same kind, and the first framework serves as the corresponding hodograph.
Figures 2, 3 und 5 illustrate the situation for plane structures.
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3. Affine Invariance of Shakiness

The study of the effect induced by an affine transformation applied to a
framework is not restricted by assuming the origin O to be fixed, as a trans-
location O — O’ may be compensated by the translation 0" — O. Thus it is
admissible to set up the transformation X — X’ by

xi' = 2 iy OT x' = AJB, (3.1)
k

where A = (a;;) denotes a non-singular (2 X 2)-matrix in the plane case and a

(3 X 3)-matrix in the spatial case.
Now it is easy to find a corresponding affine transformation

@ = Bi: (3.2)

of the hodograph, in such a manner that the orthogonality relationships (2.2) are
conserved. Because

(® —y) @ —y) = (x -y AB@E —y), (3.3)
it is sufficient to take simply
B = (AT) 1= (A1)". (3.4)

Consequently the shakiness of a structure is invariant under arbitrary affine
transformations. — To complete the proof it should be pointed out that a shaky
structure cannot become rigid after transformation. Now, if the deformation
hodograph of a spatial rodwork is three-dimensional (as in general), the trans-
formed hodograph will not be plane, as B = (471)7 is regular, and therefore the
new structure certainly is not rigid. If, however, the first hodograph was already
plane (which is possible also in the spatial case, see [17]), this argument fails.

Hence, especially in the plane case, another chain of reasoning is necessary,
showing for instance that a rigid structure always stays rigid. Without restriction
we may assume that one knot is fixed at the origin and that the axis of the instan-
taneous displacement (which now is a rotational one) coincides with the z3-axis of
the coordinate system; the hodograph is then contained in the plane x; =0 and
defined by

0 —1 0
#— Dx with D=[1 0 0], A%0. (3.5)
0 0 0

Furthermore we modify the applied affine transformation by adding a suitable
similarity transformation in such a way that each point of the z;-axis is fixed;
thus we have then the matrices

@y Gz O G —ayn O
A = 0/21 azz 0 a«nd B = — 9 a/]_l 0 ) (3.6)
0o 0 1 0 0 by

where byg = @822 — @585, & 0. Hence it follows after a little algebra:
i@’ = ABDx = ABDA x' = ABDBTx' = Jbg;Dx’. (3.7)

12 Acta Mech. 42/3—4
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5
Fig. 3. Shaky 16-bar linkage (Parallel projection of the structure in Fig. 2)

This means that the new hodograph, situated again in the plane x; = 0, is similar
to the orthogonal projection of the new rodwork onto that plane. Consequently
the displacement is only an infinitesimal rotation (about the z;-axis) and the new
structure is indeed rigid.

To illustrate the formulas let us apply the affine transformation

x1’ = xl, 1 O
i Ad=1q (3.8)
£y =G A + %, 0} 1

to Bottema’s linkage in its position of Fig. 2, where the knots have the coordinates
A4,(4,1), By(2, 4) etc. The transformed rodwork is defined by the points A, (4, 3),
B,'(2, 5), 4,'(—4, —1), By'(—2, 3) and their mirror images 45’, By’, A,', B, with
respect to the origin O (Fig. 3). The original hodograph with the vertices Ay(5, 1),
B,(—11/2, —4) etc. is then transformed by the matrix B = (4717, i.e.

1 ;. . | I
1 —_— x, = .’,El —— xz,
B = 2. 2 (3.9)
O 1 d:2, == x.z.

Hence the vertices of the new hodograph are 4,'(9/2, 1), B, (—1/2, —4), 4,'(—11/
2, 1), B,'(9/2, —4) and their mirror images with respect to the origin O; their
position vectors determine the velocity vectors of the new framework knots. In
contrast to the original linkage the derived framework is only infinitesimally
deformable.

4. Projective Invariance of Shakiness

As the proof of the invariance of shakiness under projective collineations is
more difficult, the present paper will develop the proof in extenso for plane struc-
tures only. First of all it is appropriate to make use of homogeneous coordinates;
a proper point X is then determined by the ratios of three numbers @, : z; : x,
with 2, == 0, where ,/2, and ,/%, give the ordinary (non-homogeneous) Cartesian
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coordinates. A triplet x: 2 : 2, with oy = 0 defines the point at infinity with the
direction vector (2;, ,).
A collineation (homography) X — X' is now described by

b

k=

0
To avoid degenerate mappings, let det(ay) = 4 == 0. It is fruitless to search for
a corresponding projective mapping X — X’ of the hodograph, hoping that it
might preserve the orthogonality relationships XY | XY which now read

X (xeyi — yoi) (Eofi — Yoi) = 0. (4.2)
i=1

Nevertheless, it will be possible to reach the aim by means of another trans-
formation X — X', but this one will also depend on X.

Fig. 4

For this purpose consider a framework rod issuing from the knot X(a;); its
direction is indicated by an improper point U(u;) with u, = 0 (Fig.4). The
corresponding rod in the transformed framework contains the knot X '(;") and the
vanishing point U’(u;") defined by

2
w;' = ), apuy (¢ = 10,1, 2). (4.3)
k=0

Its point at infinity, V'(v;") with vy’ = 0, is obtainable by a linear combination
v = dr; — pu;’ with 1:p = uy 12 = Y agaw: 3 aow;; hence we have (for
i=1,2):
2 2
v, = ug'x;’ — Xo'u;’ ::kZ iy With oy :.Z(; (aori; — @ojtix) %j. (4.4)
=1 j=
It may be remarked that the linear transformation formulas (4.4) describe the
projectivity relating the corresponding ray pencils X and X' as induced by the
collineation (4.1).
Now let us consider all possible velocity vectors fastened at the knot X and
having the same component along the rod axis XU. Their end points lie on a
perpendicular py | XU (Fig. 4), and so the corresponding hodograph points X

12*
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lie on a line p || px representable by

2
Y wk, = ¢ - &, with ¢ = const. (4.5)
k=1
Due to the rigidity assumption, the same perpendicular p relates to any other
point ¥ of XU. In order to have equal properties for the transformed framework
and its hodograph, we require that the corresponding rod axis X'U’ = X'V’ be
related to a perpendicular p’ | X'V’ (Fig. 4), described by

e

2
P, ! s 1 ’ > T
2vfe = aywmEi = ¢ - %o (4.6)
i=1 i, k=1

~

As this property must hold for all rods issuing from any knot X, or in other words
for arbitrary directions u, : u;, comparison of (4.5) with (4.6) leads to the con-
ditions

2 2
Qd"k == Z (xikxil or Q,','i;i, == Z ﬂik:kk (7" k= ls 2)’ (47)
i=1 k=1

where B, denotes the cofactor of xj in the (2 X 2)-matrix (x;). Evaluating the
definitions (4.4) we get

P11 = xag = Ao — A1, Pz = — a1 = Aoy — Ayo%0s (4.8)
far = —%12 = Aggry — Agi%o, Bae = 11 = Aggry — Az,
where A;, denotes the cofactor of a;; in the (3 X 3)-matrix (@)
Introducing the expressions (4.7) of &;" into Eqgs. (4.6), we have
2 2 2
o'y = X apwPuty = A - 3 dwd = 4 - D w, = Aci,, (4.9)
1 1 1

where 0, is the Kronecker symbol and 4 = det («;). This determinant has the

value
2 2

2
4 = Z X1kPie = D (@ — Qoitik) (Ao — Ayy) 2 = 2 b (4.10)
k=1 k=0 j=0

with

2 2 2 2
b; = Aol a1 D) Qo — Goj 20011:%) — %o (“17‘ 2. oAy — Qoj Zamflm)
0 0 0 0

= Ayo(ajme’ — agiy") + AagiZo and A4 = det(ay) *+0. (4.11)
This leads to
A == Alo(xolxI’ - xllxol) + Axoxo’ — Axoxol, ) (4.12)
and over (4.9) to
Q’C,$0’ —— Acxoxolio. (4.13)

As we are operating with homogeneous coordinates, it is admissible to put xy = &,
— 1 and ¢’ = —1. Moreover choosing &,/ = x, we state that the quantity ¢’ in
(4.6) is really a constant having the value ¢/ = — Ac. With all these appointments
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the required hodograph transformation X — X’ reads, according to (4.1) and (4.7):

2

&y =xy = 2 Aok Ty (g = 1),
k=0

" (4.14)
;' =k2 (Ao — Aioi) & (v=1,2; & = 1).
=]
Its existence secures the projective invariance of shakiness for plane rodworks of
the kind considered.

For spatial frameworks the proof runs in a similar way. A certain difficulty
arises only at step (4.8), as the evaluation of the cofactors f;; in the (3 X 3)-matrix
(xi) is rather laborious. Nevertheless, there exists again a suitable hodograph
transformation X — X’; it is described by equations of the form (4.14), but with
indices 7 and k going up to 3 [18]. — These equations are identical with formulas
derived by N. W. Efimow [6, p. 61], but concerning infinitesimal isometric defor-
mations of smooth surfaces. When such a surface is successively approximated by
frameworks with triangular faces (see Section 5), it seems evident that our formulas
will hold also in the limit case. Conversely, however, Efimow’s deductions, based
upon the displacements of rigid surface elements, are not transferable to rod-
works.

In order to illustrate the formulas (4.1) and (4.14) by a numerical example, let
us apply the collineation

xy = 2x, — %, DR | (A | 2 0 0
5= @)={0 1 0| w=[0 4 0] 15
2, = 2y, 0O O 2 1 0 2

to Bottema’s linkage in the position of Fig. 2. The original knots 4,(1:4: 1),
B,;(1:2:4) etc. are then replaced by 4,'(1:4:2), By'(1: —1: —4), A5'(1: —4/3
: —2/3), By’(1: —1/3: —2/3) and their mirror images 4,’, B,’, 4,’, B,/ with
respect, to the axis z," = 0 (Fig. 5). The hodograph transformation (4.14) reads

:&0, — 2(170 = x2, Zi?l' - 4@1, 22, = 2@2 —_— xlil - x2a.72. (4.16)

Fig. 5. Shaky 16-bar linkage (Central projection of the structure in Fig. 2)
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The new hodograph points, derived from A,(1:5:1), B(1: —5/2: —4) etc., are
now A,'(1:20: —19), B,/(1: 5: —13/2), 4;'(1: —20/3 : —23/3), By'(1: 5/3 : 29/6)
together with the mirror images with respect to the axis ;" = 0. The two part
diagrams of Fig. 5 are plotted with differnt scales.

5. Polyhedra and Closed Chains

The foregoing results, stating the invariance of the shakiness of rodworks under
affine and projective transformations, may easily be extended to other structures,
as polyhedra and closed chains.

A polyhedron, consisting of rigid plates which are connected by hinges along
common edges, is rigid if it is convex (A. Cauchy, 1813). Non-convex polyhedra
however may snap [8], [10], [15], [16], be shaky [2], [8], [10], [15], [17] or even be
finitely moveable, e.g. the famous open octahedra of R. Bricard [4], [10] or the
recently discovered closed polyhedra of R. Connelly [5] and K. Steffen.

If all faces of a polyhedron are triangles, an equivalent framework model may
be constructed by materializing the edges as rods connected by spherical joints at
the vertices. If there are faces with » > 3 vertices, each one can be replaced by a
(sufficiently flat) r-sided pyramid, whose base has to be stiffened by » — 3 addi-
tional diagonal rods. Thus in any case we obtain an equivalent framework appro-
priate for the application of our results on rodworks. — For instance shaky octa-
hedra as considered by W. Blaschke [2] and the author [10] are projectively
characterizable structures. Similarly the shaky antiprisms, dipyramids, dodeca-
hedra and icosahedra as indicated by M. Goldberg [8] and the author [15], [17],
mostly by metrically particular examples, will be transformed by arbitrary affine
or projective collineations into more general shaky structures of the same topo-
logical kind.

Similar developments are possible for closed hinged chains of rigid spatial
systems, as each link may be represented by a tetrahedron with opposite edges on
the two hinge axes belonging to the link [7]. Slight modifications are necessary, if
the axes are not skew (as in general) or if there are links connected by means of
spherical joints. In every case the chain camr be replaced by an equivalent frame-
work. Hence a shaky or moveable chain, subjected to an arbitrary affine or pro-
jective transformation, always will lead again to an at least shaky chain. — A
closed chain of four links, for instance, in general is rigid (m = 8,n = 20;f; = —2).
It is shaky, if the four hinge axes are skew generators of a quadric [4, p. 315]; it is
continuously moveable in the case of Bennett’s isogram linkage [1], [7], apart
from the trivial cases of parallel or concurrent axes (plane or spherical four-bar
linkages).

After all we have the final statement: If a jointed rodwork or any other equiv-
alent structure admits an infinitesimal deformation, this property is a projective
one, as an arbitrary affine or projective transformation in turn generates an
analogous structure. Corresponding velocity diagrams for the new structures may
be derived from the original hodographs by means of the formulas (3.2) and (4.14),
respectively.
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