,Ringartige Wackelpolyeder"
§1. Wackelpolyeder sind Vielflache, die von starren, längs der Kanten gelenkig verbundenen ebenen Polygonen berandet sind und eine infinitesimale Deformation gestatten. An Beispielen hierfür besteht kein Mangel. Beginnend mit den Wackeloktaedern W. Blaschkes [1,3],
wurden später wackelige Antiprismen [2,4], Doppelpyramiden [5], Dodekaeder [6] und Ikosaeder [2, 7] untersucht.

Alle diese Beispiele sind vom topologischen Typus der Kugel, also ,Sphären". Ringartige Wackelpolyeder, also vom Zusammenhang des Torus, sind bisher nicht bekannt und sollen in der vorliegenden
Mitteilung durch einfache Beispiele belegt werden.
§2. Ein Ringpolyeder soll zunächst aus $n \geqslant 4$ kongruenten prismatischen Teilen mit deltoidförmigem Querschnitt zusammengesetzt wer-
 gehen wir aus von zwei die z-Achse enthaltenden ,,Meridianebenen" μ_{1} beschrieben werden durch

$$
\text { (1) } \beta x \pm \alpha y=0 \text { mit } \alpha=\cos \gamma, \beta=\sin \gamma, \gamma=\pi / n, n \text { gerade. }
$$

$$
\text { In } \mu_{1} \text { liege das Deltoid } A_{1} B_{1} C_{1} D_{1} \text { mit den Ecken }
$$

$$
\text { (2) } A_{1}\left(\alpha u_{1},-\beta u_{1}, 0\right), \quad B_{1}\left(\alpha v_{1},-\beta v_{1}, z_{1}\right)
$$

$C_{1}\left(\alpha w_{1},-\beta w_{1}, 0\right), \quad D_{1}\left(\alpha v_{1},-\beta v_{1},-z_{1}\right)$, in μ_{2} das Deltoid $A_{2} B_{2} C_{2} D_{2}$ mit den Ecken

$$
{ }^{\prime}\left(z_{z} z_{l} g^{\prime} z_{l} x\right)^{z} g \quad{ }^{\prime}\left(0^{\prime} z_{n}{ }^{\prime} z_{n x}\right)^{z_{V}}
$$

$$
C_{2}\left(\alpha w_{2}, \beta w_{2}, 0\right), \quad D_{2}\left(\alpha v_{2}, \beta v_{2},-z_{2}\right)
$$

zwangläufig beweglich auf. Die Größen u_{i}, v_{i}, w_{i} und z_{i} seien also bestimmte, nicht näher definierte Funktionen eines Zeitparameters t, von иәр иәио!чяйд әя! gleichen Wert annehmen; es sei also
(4) $\quad u_{1}(0)=u_{2}(0)=u, \quad v_{1}(0)=v_{2}(0)=v$,

In dieser Ausgangslage sind mithin die beiden Deltoide kongruent und beranden dann einen Prismenmantel mit y-parallelen Kanten.

 Kanten. Diese Anzahlen genügen naturgemäß der Eulerschen Relation

§3. Wir verlangen nun, daß gewisse Entfernungen zwischen den betrachteten beweglichen Punkten zur Zeit $t=0$ stationär sein sollen, also verschwindende Ableitung nach t haben. Die Distanzstrecken zwischen solchen Punktepaaren könnten dann durch starre Stäbe realisiert werden, ohne die momentane Bewegung zu hindern, soferne die Verbindungen in den vorhandenen Knoten gelenkig ausgeführt sind. - Wir betrachten zunächst die Entfernung $A_{1} A_{2}$. Sie berechnet sich

$$
\text { (5) } \quad A_{1} A_{2}^{2}=\alpha^{2}\left(u_{1}-u_{2}\right)^{2}+\beta^{2}\left(u_{1}+u_{2}\right)^{2}
$$

und durch Nullsetzen der Ableitung an der Stelle $t=0$ ergibt sich mit Beachtung von (4) über $4 \beta^{2} u\left[\dot{u}_{1}(0)+\dot{u}_{2}(0)\right]=0$ bei Unterdrückung des

(6)

$$
\dot{u}_{2}=-\dot{u}_{1}
$$

Ebenso findet man für eine stationäre Entfernung $C_{1} C_{2}$ die Bedingung

E

 Hauptdiagonale $A_{i} C_{i}$ verkürzt ($\dot{u}_{1}>\dot{w}_{1}$), was von einer Verlängerung der Nebendiagonale $B_{i} D_{i}$ begleitet ist ($\dot{z}_{1}>0$). Die Deltoide mit geradem Index hingegen rücken unter Verlängerung der Hauptdia-
 иәءิน auf, also keine Hohlkanten.

Quantitative Auskunft über die durch den Wackelvorgang bewirkten (kleinen) Verlagerungen der Polyederecken oder Fachwerksknoten
vermitteln deren Geschwindigkeitsvektoren. Dieselben gehören durchvermitteln deren Geschwindigkeitsvektoren. Dieselben gehören durch-
wegs den Meridianebenen an und sind durch ihre Radialkomponenten
 vorerst die der Bedingung (18) genügenden Abmessungen u und w mittels eines Hilfsparameters τ aus durch

$$
\text { (19) } \quad u=\left(\alpha^{2}+\frac{\beta^{2}}{\tau}\right) v, w=\left(\alpha^{2}+\beta^{2} \tau\right) v,
$$

so erhalten wir aus (14) und (9) die Verhältniswerte
(20) $\quad \dot{u}_{1}: \dot{v}_{1}: \dot{w}_{1}: \dot{z}_{1}=\left(\alpha^{2} \tau+\beta^{2}\right) \tau: \tau:\left(\alpha^{2}+\beta^{2} \tau\right): \frac{\alpha^{2} \beta^{2} v}{z}(\tau-1)^{2}$. Für die entsprechenden Größen mit dem Index 2 ist gemäß (6), (7) und (10) bloß das Vorzeichen umzukehren.

 werden. Die Gleichung (18) wird dann in der (u, w)-Ebene für jedes gewünschte n durch eine den Punkt $(1,1)$ enthaltende gleichseitige Hyperbel mit den Asymptoten $u=\alpha^{2}$ und $w=\alpha^{2}$ dargestellt. Diese Hyperbeln können noch mit einer τ-Skala versehen werden, wie dies im Diagramm Abb. 3 für die Annahmen $n=4\left(\alpha^{2}=\beta^{2}=1 / 2\right)$ und $n=6\left(\alpha^{2}=3 / 4, \beta^{2}=1 / 4\right)$ geschehen ist.
Dem in Abb. 1 und 2 wiedergegebenen sechsteiligen Wackelring ($n=6$) liegt die auf der Wahl $\tau=3$ beruhende Annahme (21)

$$
u=5, v=6, w=9, z=3
$$

zu Grunde. Für die Wackelgeschwindigkeiten gilt zufolge (20) $\dot{u}_{1}: \dot{v}_{1}: \dot{w}_{1}: \dot{z}_{1}=5: 2: 1: 1$.

Für das in Abb. 4 axonometrisch dargestellte vierteilige Ringpoly-
 Formeln wegen $\alpha^{2}=\beta^{2}$ beträchtlich vereinfachen würde - wurde die auf die W ahl $\tau=2$ gestützte Annahme
(23)
Anders geschrieben, lautet diese endgültige Wackelbedingung (18)
§5. Wird also jetzt das zu Beginn von §4 beschriebene Stabmodell durch jene $4 n$ Diagonalstäbe ergänzt, die aus $A_{2} B_{1}$ und $B_{1} C_{2}$ durch Spiegelung an der $x y$-Ebene sowie fortgesetzte Spiegelungen an den Meridianebenen μ_{1}, μ_{2} (1) hervorgehen, so entsteht ein ringartiges Fachwerk aus $12 n$ Stäben mit $4 n$ Knoten, das trotz seiner sechsfachen
 Formparameter u, v, w der Bedingung (18) genügen; der vierte Parameter z ist frei wählbar. gelenkig verbundene Platten ausgefüllt, so hat man ein wackeliges erst nach erfolgter Deformation des Rings einen Winkel bilden, der stationäre Längen haben.

$$
\left(u-\alpha^{2} v\right)\left(w-\alpha^{2} v\right)=\beta^{4} v^{2}
$$

Werden die $8 n$ Fachwerksdreiecke als starre, längs der Kanten Ringpolyeder. Zu bemerken wäre, daß je zwei längs einer Diagonalkante zusammenhängende Dreiecke in der Ausgangslage komplanar sind und natürlich vom gestreckten nur wenig abweicht. Hieraus ist zu erkennen, da $ß$ auch die nicht realisierten Diagonalen, wie etwa $A_{1} B_{2}$ und $B_{2} C_{1}$,

ㄷ
Literatur
[1] Blaschke, W.: Wackelige Achtflache. Math. Z. 6 (1920), 85-93.
[2] Goldberg, M.: Unstable polyhedral structures. Math. Magaz. 51 (1978),
165-170.
[3] Wunderlich, W.: Starre, kippende, wackelige und bewegliche Achtflache.
Elem. Math. 20 (1965), 25- 32.
[4] Wunderlich, W.: Snapping and shaky antiprisms. Math. Magaz. 52 (1979),
235-236.
[5] Wunderlich, W.: Wackelige Doppelpyramiden. Anz. Österr. Akad. Wiss. 117
(1980), 82-87.
[6] Wunderlich, W.: Wackeldodekaeder. Math. stat. Sekt. FZ Graz 149 (1980),
1-8. Wackeldodekaeder. Elem. Math. (im Druck).
[7] Wunderlich, W.: Wackelikoseder. Geom. dedicata 11 (1980), 137-146. -
Neue Wackelikosaeder. Anz. Osterr. Akad. Wiss. 117 (1980), 28-33.

Abb. 4 Wackeliger Vierer-Ring in Ausgangslage.
verwendet. Die Knotenverrückungskomponenten verhalten sich dabei gemäß (20) wie (24)

Die zur Herstellung von Karton- oder Stabmodellen benötigten Kanten- bzw. Stablängen sind jeweils mittels der durch die Festsetzungen (4) vereinfachten Distanzformeln (5), (8), (11) und (12) - nebst
zweier zusätzlichen für $C_{1} C_{2}$ und $B_{1} C_{2}$ - leicht zu berechnen.

