Separatum

ELEMENTE DER MATHEMATIK

BIRKHÄUSER VERLAG BASEL, SCHWEIZ Vol. 37/6, 1982

Wackeldodekaeder

1. Einleitung

In Anlehnung an die «Siamesischen Zwillingsdoppelpyramiden» mit fünfeckiger Basis, die Goldberg [1] als originelles Beispiel für Wackelikosaeder angeführt hat, werden hier solche Zwillingsdoppelpyramiden mit dreieckiger Basis, also doppelt-symmetrische Dreiecks-Zwölfflache, von der aus Figur 1 ersichtlichen Bauart betrachtet und hinsichtlich ihrer Stabilität untersucht. Da dieser reizvolle, bereits in [3], [5] und [6] angeschnittene Fragenkreis im Grunde bloss ein wenig elementare Algebra erfordert, könnte er, begleitet von der Herstellung einschlägiger Modelle, ein anregendes Thema für eine Schüler-Arbeitsgemeinschaft bieten.

Macht man die Symmetrieachse zur z-Achse eines kartesischen Koordinatensystems (O; x, y, z), so lassen sich die acht Ecken des Dodekaeders ansetzen mit

$$A(a,0,z), A'(-a,0,z), B(0,a,-z), B'(0,-a,-z), C(x,0,-u), C'(-x,0,-u), D(0,y,v), D'(0,-y,v).$$
(1.1)

Gefordert wird überdies, dass gleichartige Kanten gleich lang sein sollen, also:

$$AA' = BB' = 2a$$
, $AC = A'C' = BD = B'D' = b$,
 $AD = A'D = AD' = A'D' = BC = B'C = BC' = B'C' = c$,
 $CD = C'D = CD' = C'D' = d$. (1.2)

Von den 18 Kanten stossen in A, A', B und B' je vier zusammen, in den übrigen Ecken je fünf.

Nach Vorgabe der vier Kantenlängen 2a, b, c, d stehen für die fünf Formparameter u, v, x, y, z die nachstehenden fünf quadratischen Gleichungen zur Verfügung:

$$(x-a)^{2} + (z+u)^{2} = (y-a)^{2} + (z+v)^{2} = b^{2},$$

$$x^{2} + (z-u)^{2} = y^{2} + (z-v)^{2} = c^{2} - a^{2},$$

$$x^{2} + y^{2} + (u+v)^{2} = d^{2}.$$
(1.3)

Zur Formbestimmung des Polyeders ist das Gleichungssystem (1.3) aufzulösen. Aus den ersten beiden Zeilen folgen zunächst die Beziehungen

$$(x+y-2a)(x-y)+(2z+u+v)(u-v)=0,(x+y)(x-y)-(2z-u-v)(u-v)=0.$$

Ersetzt man sie durch Summe und Differenz, so gelangt man zu den einfacheren, den Formparametern auferlegten «Passbedingungen»:

$$(x+y-a)(x-y)+(u+v)(u-v)=0,-a(x-y)+2z(u-v)=0.$$
 (1.4)

Nunmehr sind aber zwei Fälle zu unterscheiden, je nachdem ob x=y oder x+y angenommen wird, was unter den natürlichen Voraussetzungen a+0 und z+0 auch u=v bzw. u+v nach sich zieht.

2. Dodekaeder vom ersten Typ

Unter der Annahme x=y, u=v, die kongruente Dodekaederhälften bedeutet, sind die Passbedingungen (1.4) sicherlich erfüllt, und das Gleichungssystem (1.3) reduziert sich auf

$$x^{2}-2ax+(u+z)^{2}=b^{2}-a^{2},$$

$$x^{2}+(u-z)^{2}=c^{2}-a^{2},$$

$$x^{2}+2u^{2}=d^{2}/2.$$
(2.1)

Differenzenbildung führt auf das gleichwertige System

$$2ax - 4uz = c^{2} - b^{2},$$

$$u^{2} + 2uz - z^{2} = a^{2} - c^{2} + d^{2}/2,$$

$$2u^{2} + x^{2} = d^{2}/2.$$
(2.2)

Nach Elimination von x mittels

$$x = \frac{4uz - b^2 + c^2}{2a} \tag{2.3}$$

verbleibt ein Gleichungspaar in u und z, das mit der Substitution u=wz übergeht in

$$z^{2}(w^{2}+2w-1) = a^{2}-c^{2}+d^{2}/2,$$

$$8 wz^{2}(2 wz^{2}+a^{2}w-b^{2}+c^{2}) = 2 a^{2} d^{2}-(b^{2}-c^{2})^{2}.$$
(2.4)

Die Elimination von z führt schliesslich über

$$z^{2} = \frac{a^{2} - c^{2} + d^{2}/2}{w^{2} + 2w - 1}$$
 (2.5)

zu einer Gleichung 4. Grades in w. Jede Lösung derselben liefert, zurückgehend, der Reihe nach die Formparameter z, u = wz und x. Die zu einfachen Wurzeln w gehörigen (nicht unbedingt reellen) Formen des Polyeders sind starr.

Gibt man umgekehrt die Formparameter a, u, x und z vor, so sind die zur Herstellung eines Modells benötigten Kantenlängen b, c und d aus (2.1) zu berechnen.

3. Dodekaeder vom zweiten Typ

Die Alternative $x \neq y$, $u \neq v$ bedeutet *ungleiche Dodekaederhälften*, und die erste Passbedingung (1.4) kann ersetzt werden durch

$$2z(x+y-a)+a(u+v)=0. (3.1)$$

Aus der Differenz der ersten beiden Zeilen von (1.3) folgen über die die zweite Passbedingung enthaltenden Beziehungen

$$2ax - 4uz = 2ay - 4vz = c^2 - b^2$$

die Ansätze

$$x = \frac{1}{2a} (4uz - b^2 + c^2), \qquad y = \frac{1}{2a} (4vz - b^2 + c^2). \tag{3.2}$$

Nach Einführung der symmetrischen Funktionen

$$u+v=p, \qquad uv=q \tag{3.3}$$

erhält man aus (3.1) und den letzten drei Gleichungen (1.3) das System

$$2z(x+y-a)+ap=0,x^2+y^2+p^2=d^2,z^2-pz-q=c^2-a^2-d^2/2.$$
(3.4)

Elimination von x und y durch Einsetzen der Ausdrücke (3.2) in (3.4) führt dann mit Berücksichtigung von (3.3) auf das nachstehende Gleichungstripel für p, q und z:

$$(4z^{2} + a^{2})p = 2z(a^{2} + b^{2} - c^{2}),$$

$$(4z^{2} + a^{2})p^{2} = 8qz^{2} + 2(b^{2} - c^{2})pz + a^{2}d^{2} - (b^{2} - c^{2})^{2}/2,$$

$$q = z^{2} - pz + a^{2} - c^{2} + d^{2}/2,$$
(3.5)

wobei die zweite Gleichung auf Grund der ersten ersetzt werden kann durch

Nach Vorgabe von Werten für
$$a$$
, $u=v$ un $2/(c^2-c^2)+(b^2-c^2)+(b^2-c^2)=2q^2-c$ ormparameter z vermöge (4.1) zu ergänzen. So ergibt sich etwa das in Figur 2

Die Elimination von p und q liefert schliesslich eine biquadratische Gleichung für z:

gen Kantenlängen betragen
$$\varrho a = 6$$
, $b = \sqrt{20} = 4.47$, $e = \sqrt{14} = 3.74$ and $d = \sqrt{14}$

Zurückgehend führt dann jede Lösung von (3.6) über (3.5) zunächst auf p und q und zufolge (3.3) auf vertauschbare Wertepaare u, v sowie gemäss (3.2) auf die zugehörigen Werte von x und y.

Ein solches Wackeldodekaeder I. Art gehört in der Gründstellung zum ersten Typ

Gibt man hingegen die Formparameter u, v und x, y vor so erhält man aus den Passbedingungen (1.4) die fehlenden Parameter

$$a = x + y + \frac{u^2 - v^2}{x - y}, \qquad z = \frac{1}{2} \left(u + v + \frac{x^2 - y^2}{u - v} \right).$$
 (3.7)

So ergibt sich etwa das in Figur 1 dargestellte Dodekaeder mit den Daten u=4, v=2, x=5, y=1 und den ergänzenden Formparametern a=z=9; die zugehörigen Kantenlängen betragen 2a=18, $b=\sqrt{185}=13,60$, $c=\sqrt{131}=11,45$, $d=\sqrt{62}=7,87$.

Tausch der Werte u und v sowie x und y liefert ein kongruentes Dodekaeder mit vertauschten Hälften. Der Übergang zwischen den beiden Formen ist bei einem Karton- oder Stabmodell mit gelenkig ausgeführten Verbindungen durch sanfte Gewalt ohne weiteres zu erzwingen: Man hat damit ein brauchbares Beispiel für ein Kipp-Dodekaeder. Zwischen den beiden Positionen gibt es eine Mittelstellung. ersten Typs, die gemäss Abschnitt 2 zu bestimmen ist; sie ist durch u=v=3,11, x=y=3,42 und z=9,30 gekennzeichnet. Daneben existiert noch eine zweite reelle Mittelposition mit u=v=-2,25, x=y=-4,57 und z=3,15, die jedoch wegen Überschneidungen nur als Stabmodell zu realisieren ist; dies geschieht am einfachsten durch Plastikstrohhalme, die mittels durchgezogener Zwirnsfäden verknüpft werden.

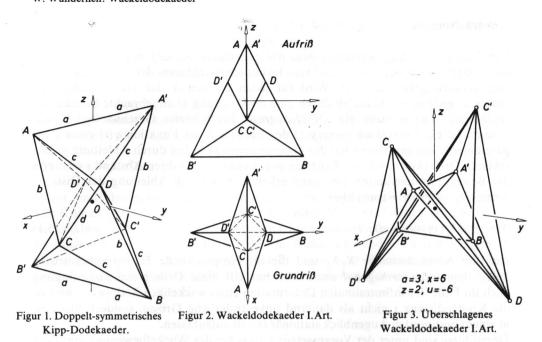
4. Wackeldodekaeder I. Art

Rücken die beiden vorhin erwähnten, auf dem Tausch von u mit v und x mit y beruhenden Formen eines Kipp-Dodekaeders zusammen, so entsteht ein Wackelpolyeder mit bloss infinitesimaler Deformabilität, die jedoch am Modell überaus deutlich zu merken ist. Ein solches wackeliges Zwölfflach ist durch u=v und x=y bedingt, wofür allerdings die Formeln (3.7) versagen; aus (3.1) gewinnt man aber die entscheidende Wackelbedingung

$$z(2x-a) + au = 0$$
 oder $\frac{x}{a} = \frac{z-u}{2z}$. (4.1)

Nach Vorgabe von Werten für a, u=v und x=y ist der noch fehlende Formparameter z vermöge (4.1) zu ergänzen. So ergibt sich etwa das in Figur 2 wiedergegebene Beispiel mit den Daten a=z=3 und u=v=x=y=1; die zugehörigen Kantenlängen betragen 2a=6, $b=\sqrt{20}=4,47$, $c=\sqrt{14}=3,74$ und $d=\sqrt{6}=2,45$.

Ein solches Wackeldodekaeder I. Art gehört in der Grundstellung zum ersten Typ, während die beim Wackelvorgang entstehenden, geringfügig abweichenden Formen vom zweiten Typ sind: Wird die eine Hälfte zusammengedrückt, so bläht sich die andere wie bei einem Blasebalg auf. – Wie leicht nachzuprüfen ist, bedeutet die



Relation (4.1) geometrisch, dass etwa die Ecken A, A', B und D komplanar sind. Dieser Umstand bedingt, dass sich der Abstand 2z der beiden orthogonalen Scheitelkanten AA' und BB' bei der Wackelbewegung nur in höherer Kleinheitsordnung ändert; die Ecke D weicht bei der infinitesimalen Drehung um die Kante AA' normal zur Ebene AA'B aus, was mit der Koppelung an die Ecke B verträglich ist (vgl. Fig. 2 und Abschnitt 5). Man könnte also – vor allem bei einem Stabmodell – auch noch die vier Stäbe AB, A'B, AB' und A'B' mit der gemeinsamen Länge $e = \sqrt{2 a^2 + 4 z^2}$ hinzufügen, ohne dass dadurch die Wackeligkeit aufgehoben würde. Entfernt man sodann aus dem so gewonnenen Stabwerk die beiden Scheitelkanten AA' und BB', so verbleibt eine geschlossene Gelenkkette aus vier kongruenten Tetraedern, die in endlichem Ausmass zwangläufig beweglich ist, ja sogar eine vollständige Umstülpung gestattet; sie repräsentiert ein spezielles

(nämlich gleichseitiges) Bennettsches Isogramm [4].

Wie die Wackelbedingung (4.1) in ihrer zweiten Gestalt erkennen lässt, haben alle Exemplare mit demselben Verhältniswert u/z auch ein gemeinsames Verhältnis x/a; sie sind daher untereinander affin. Für |u/z| < 1 ergeben sich Dodekaeder, die als Kartonmodelle ausführbar sind; für |u/z| > 1 entstehen hingegen Formen, die wegen vorhandener Überschneidungen nur durch Stabmodelle realisierbar sind. Figur 3 zeigt ein solches Modell für die Annahme a=3, u=v=-6, x=y=6, z=2. – Wie Liebmann [2] gezeigt hat, ist die Wackeligkeit einer Struktur, wiewohl dem Wesen nach metrisch bedingt, in Wahrheit eine projektive Eigenschaft: Wird eine Wackelstruktur einer beliebigen affinen oder sogar kollinearen Transformation unterworfen, so entsteht immer wieder eine Wackelstruktur. Ein neuer Beweis für diese merkwürdige Tatsache ist kürzlich dem Verfasser gelungen [7].

5. Wackelvorgang

Die Wackelbewegung gegenüber dem fest gedachten Achsenkreuz (O; x, y, z) wird quantitativ am besten durch die Geschwindigkeitsvektoren der einzelnen Ecken oder Knoten gekennzeichnet. Wird für jeden Knoten X der Geschwindigkeitsvektor in geeignetem Maßstab durch eine im Ursprung O angebrachte Strecke OX repräsentiert, so entsteht ein als Hodograph bezeichnetes Geschwindigkeitsdiagramm. Ist der Ortsvektor x = (x, y, z) des Punktes X als Funktion x eines Zeitparameters x bekannt, dann hat der Diagrammpunkt x den durch Ableitung nach x erklären Ortsvektor x = dx/dt. Behalten zwei Punkte x ihren Abstand x während der Bewegung unverändert bei, dann erkennt man durch Ableitung der Distanzformel $(x_1 - x_2)^2 = s^2 = const$ über

$$(x_1 - x_2)(\dot{x}_1 - \dot{x}_2) = 0,$$
 (5.1)

dass die Abstandsstrecke X_1X_2 und die ihr entsprechende Hodographenstrecke $\dot{X}_1\dot{X}_2$ zueinander *orthogonal* sind. Offenbar gilt diese Orthogonalitätsbedingung auch im Falle der infinitesimalen Deformation eines wackeligen Stabwerks; hier ist die Knotendistanz s nicht als dauernd unveränderliche Grösse, sondern bloss als in einem bestimmten Augenblick stationär $(\dot{s}=0)$ aufzufassen.

Demzufolge sind unter der Voraussetzung, dass bei der Wackelbewegung eines der hier betrachteten Dodekaeder der Rahmen der durch den Ansatz (1.1) erfassbaren Formenmenge nicht verlassen wird, die den acht Knoten zugeordneten Hodographenpunkte bestimmt durch

$$\dot{A}(0,0,\dot{z}), \quad \dot{A}'(0,0,\dot{z}), \quad \dot{B}(0,0,-\dot{z}), \quad \dot{B}'(0,0,-\dot{z}),
\dot{C}(\dot{x},0,-\dot{u}), \quad \dot{C}'(-\dot{x},0,-\dot{u}), \quad \dot{D}(0,\dot{y},\dot{v}), \quad \dot{D}'(0,-\dot{y},\dot{v}).$$
(5.2)

Die hierbei auftretenden fünf Geschwindigkeitskomponenten \dot{u} bis \dot{z} genügen den aus den Distanzformeln (1.3) durch Ableitung hervorgehenden fünf linear-homogenen Gleichungen

$$(x-a)\dot{x} + (z+u)(\dot{z} + \dot{u}) = 0, \qquad x\dot{x} + (z-u)(\dot{z} - \dot{u}) = 0,$$

$$(y-a)\dot{y} + (z+v)(\dot{z} + \dot{v}) = 0, \qquad y\dot{y} + (z-v)(\dot{z} - \dot{v}) = 0,$$

$$x\dot{x} + y\dot{y} + (u+v)(\dot{u} + \dot{v}) = 0.$$
(5.3)

Aus den ersten beiden Gleichungspaaren fliessen die Ansätze

$$\dot{x} = 2\rho (u^2 - z^2), \qquad \dot{z} = \rho (2xz - az + au), \qquad \dot{u} = -\rho (2xu + az - au);
\dot{y} = 2\sigma (v^2 - z^2), \qquad \dot{z} = \sigma (2yz - az + av), \qquad \dot{v} = -\sigma (2yv + az - av).$$
(5.4)

Unter der besonderen Annahme, dass die Wackelposition in der Mittelstellung eintritt, wie dies im vorigen Abschnitt der Fall war, vereinfachen sich die Ansätze durch die Identifikationen x=y und u=v, was jedoch keineswegs $\dot{x}=\dot{y}$ und $\dot{u}=\dot{v}$ nach sich ziehen muss. Die notwendige Überstimmung der beiden Ausdrücke für \dot{z} tritt nämlich auch ohne $\rho=\sigma$ ein, wenn 2xz-az+au=0: Dies kennzeichnet

zufolge (4.1) gerade die Wackeldodekaeder I. Art. Mit Rücksicht auf diese Beziehung lassen sich nun die Ansätze (5.4) reduzieren auf

$$\dot{x} = \rho' \cdot 2z$$
, $\dot{y} = \sigma' \cdot 2z$, $\dot{z} = 0$, $\dot{u} = \rho' \cdot a$, $\dot{v} = \sigma' \cdot a$, (5.5)

wobei die trivialen Ausartungen u+z=0 und x=0 ausgeschlossen wurden. Eintragung dieser Ausdrücke in die noch nicht verwertete letzte Gleichung (5.3) führt dann über $\rho'+\sigma'=0$ auf die Geschwindigkeitskomponenten

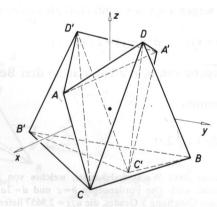
$$\dot{x} = -\dot{y} = \rho' \cdot 2z, \qquad \dot{z} = 0, \qquad \dot{u} = -\dot{v} = \rho' \cdot a. \tag{5.6}$$

Damit sind also gemäss (5.2) die Wackelgeschwindigkeitsvektoren für sämtliche acht Knoten (bis auf einen unbestimmt bleibenden Maßstabsfaktor $\rho' \neq 0$) bekannt. Im Einklang mit der in Abschnitt 4 gemachten Bemerkung bleiben wegen $\dot{z} = 0$ die beiden Scheitelkanten AA' und BB' in Ruhe, während etwa der Knoten D normal zur Ebene AA'BD ausweicht (Fig. 2). – Der zum Wackeldodekaeder I. Art gehörige Hodograph hat die Gestalt einer quadratischen Pyramide mit der Spitze im Ursprung $\dot{A} = \dot{A}' = \dot{B} = \dot{B}'$.

6. Wackeldodekaeder II. Art

Die Alternative $2xz-az+au \neq 0$ verlangt in (5.4) $\rho = \sigma$ zu nehmen, um übereinstimmende \dot{z} -Werte zu erhalten. Dies zieht jetzt $\dot{x} = \dot{y}$ und $\dot{u} = \dot{v}$ nach sich, und die Eintragung der betreffenden Ausdrücke in die letzte Gleichung (5.3) liefert dann, immer unter der Voraussetzung x = y und u = v, eine neue Wackelbedingung

$$x(z^2+u^2)+au(z-u)=0$$
 oder $\frac{x}{a}=\frac{u(u-z)}{u^2+z^2}$ (6.1)



Figur 4. Wackeldodekaeder II. Art.

Nach Vorgabe von Werten für u=v, x=y und z ist der noch fehlende Formparameter a mittels (6.1) zu ergänzen. So ergibt sich etwa das in Figur 4 dargestellte Beispiel mit den Daten u=v=4, x=y=z=2, a=5; die zugehörigen Kantenlängen betragen 2a=10, $b=\sqrt{45}=6,71$, $c=\sqrt{33}=5,74$, $d=\sqrt{72}=8,49$. Ein solches Wackeldodekaeder II. Art unterscheidet sich von jenem I. Art (Abschnitt 4) dadurch, dass es während des Wackelvorgangs ständig eine Form ersten Typs (also mit kongruenten Hälften) beibehält. Wieder gilt aber mit Rücksicht auf die Relation (6.1) in ihrer zweiten Gestalt, dass alle zum gleichen Quotienten u/z gehörigen Exemplare untereinander affin sind. Für 0 < z < u und 0 < -u < z sind die Polyeder als Kartonmodelle ausführbar, sonst nur als Stabmodelle¹). Für die Geschwindigkeitskomponenten gilt zufolge (5.4) und (6.1) die Proportion

$$\dot{x}: \dot{z}: \dot{u} = 2u(u-z): x(z+u): x(z-u). \tag{6.2}$$

Der Hodograph hat die Gestalt eines Oktaeders.

7. Wackeldodekaeder III. und IV. Art

Unter der allgemeinen Annahme – also einer von der Mittelstellung verschiedenen Wackelposition – folgt aus (5.4)

$$\rho: \sigma = (2yz - az + av): (2xz - az + au). \tag{7.1}$$

Durch Eintragen der entsprechenden Ausdrücke für \dot{x} , \dot{y} , \dot{u} , \dot{v} aus (5.4) in die letzte Gleichung (5.3) erhält man so nach einiger Rechnung die zum Verschwinden der Koeffizientendeterminante von (5.3) äquivalente allgemeine Wackelbedingung

$$4xyz(z^2+uv) = a(z-u)(z-v)[x(z-v)+y(z-u)+a(u+v)].$$
 (7.2)

Daneben sind noch die wegen x + y, u + v mit (1.4) gleichwertigen Passbedingungen

$$2z(a-x-y) = a(u+y), a(x-y) = 2z(u-y) (7.3)$$

zu beachten. Nach Vorgabe von u, v, z hat man so drei Bestimmungsgleichungen für a, x und y.

Die Elimination von a mittels

$$a = \frac{2z(x+y)}{2z - u - v} \qquad (u+v \neq 2z)$$
 (7.4)

1) Hervorzuheben ist vielleicht jenes Wackeldodekaeder, welches von lauter kongruenten (gleichschenkligen) Dreiecken gebildet wird. Die Forderungen b=c und d=2a führen zusammen mit der Wackelbedingung (6.1) auf eine Gleichung 5. Grades, die u/z=2,8657 liefert; die Dreiecksseiten verhalten sich ziemlich genau wie 13:13:20.

führt zunächst auf das nach x und y geordnete Gleichungspaar

$$Ax^{2} - Bxy + Cy^{2} = 0 \quad \text{mit}$$

$$A = (z - u)(z - v)[(z - v)(2z - u - v) + 2z(u + v)],$$

$$B = (z + u)(z + v)[(2z - u - v)^{2} - 4z(z - u)(z - v)(u + v)],$$

$$C = (z - u)(z - v)[(z - u)(2z - u - v) + 2z(u + v)]$$
(7.5)

und

$$x^{2} - y^{2} = (u - v)(2z - u - v). (7.6)$$

Das quadratische Polynom (7.5) lässt sich zerlegen in das Produkt

$$[(z-v)x-(z-u)y]\cdot(\alpha x-\beta y) \quad \text{mit} \quad \alpha=\frac{A}{z-v}, \qquad \beta=\frac{C}{z-u}$$
 (7.7)

Nullsetzen des ersten Faktors führt über x = t(z - u), y = t(z - v) und (7.6) auf $t^2 + 1 = 0$, also auf keine reellen Lösungen. Nullsetzen des zweiten Faktors hingegen liefert mit den Ansätzen

$$x = t \beta = t (z - v) [2 z^{2} + (v - u) z + (u + v) u],$$

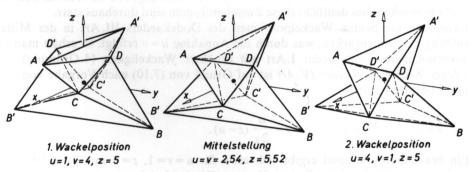
$$y = t \alpha = t (z - u) [2 z^{2} + (u - v) z + (u + v) v]$$
(7.8)

vermöge (7.6) auf

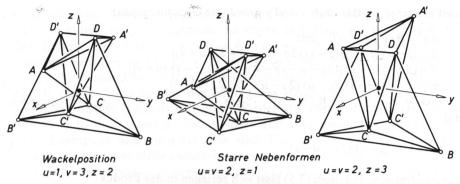
$$t^{2} = \frac{1}{4z(u+v)(z^{2}+uv)}.$$
 (7.9)

Damit ergeben sich gemäss (7.8) die Werte der Formparameter x und y, und schliesslich findet man über (7.4) auch

$$a = 2\sqrt{\frac{z(z^2 + uv)}{u + v}}. (7.10)$$



Figur 5. Wackeldodekaeder III. Art.



Figur 6. Überschlagenes Wackeldodekaeder III. Art.

Ein auf diesem Wege gewonnenes Wackeldodekaeder III. Art besitzt aus Symmetriegründen zwei Wackelpositionen zweiten Typs, zwischen welchen unter Umständen ein kippender Übergang über eine (starre) Mittelstellung ersten Typs möglich ist. Dieses Verhalten zeigt das in Figur 5 dargestellte Kartonmodell zur Annahme $u=1, \ v=4, \ z=5$; die zusätzlichen Formparameter ergeben sich über $t^2=1/2900$ mit $a=\sqrt{29}=10,77, \ x=7/\sqrt{29}=1,30$ und $y=22/\sqrt{29}=4,09$. Der Kippvorgang über die zwar starre, jedoch schon nahezu wackelige Zwischenform geht allerdings so sanft vor sich, dass eher der Eindruck einer stetigen, wenn auch begrenzten Bewegung entsteht.

Auch für die unter (7.4) ausgeschlossene Annahme u+v=2z behalten die Schlussformeln noch ihre Gültigkeit. Nach Vorgabe von u und v erhält man

$$a = \sqrt{\frac{1}{2} (u^2 + 6uv + v^2)}, \qquad x = -y = \frac{u^2 - v^2}{2a}.$$
 (7.11)

Figur 6 zeigt links das Stabmodell zur Annahme u=1, v=3 (z=2) in einer Wackelposition; die restlichen Formparameter haben die Werte $a=\sqrt{14}=3.74$ und $-x=y=\sqrt{8/7}=1.07$. Hier ist der direkte Übergang zur zweiten Wackelposition nicht möglich, weil kreuzende Stäbe dies verhindern. Die beiden reellen, gemäss Abschnitt 2 zu berechnenden Zwischenpositionen ersten Typs mit u=v=2 und $x=y=-\sqrt{8/7}$, z=1 oder $x=y=\sqrt{8/7}$, z=3, wiedergegeben im rechten Teil von Figur 6, machen dies deutlich; diese Zwischenformen sind durchaus starr.

Lässt man die beiden Wackelpositionen des Dodekaeders III. Art in der Mittelstellung zusammenrücken, was durch die Annahme u=v erfolgt, so erhält man ein ausgezeichnetes Dodekaeder I. Art mit erhöhter Wackeligkeit (4. Ordnung). Ein solches Wackeldodekaeder IV. Art ist auf Grund von (7.10) nach Vorgabe von u=v und z bestimmt durch

$$a = \sqrt{\frac{2z}{u}(z^2 + u^2)}, \qquad x = y = \frac{a}{2z}(z - u).$$
 (7.12)

Ein brauchbares Beispiel ergibt sich etwa für u=v=1, z=3 mit $a=\sqrt{60}=7,75$ und $x=y=\sqrt{20/3}=2,58$. Es ist affin zum Wackeldodekaeder I. Art von Figur 2,

welches jedoch bloss eine Wackeligkeit 2. Ordnung aufweist, wie die aufwendige Untersuchung der höheren Ableitungen der Gleichungen (5.3) lehrt. – Die in Abschnitt 6 behandelten Wackeldodekaeder II. Art besitzen übrigens nur die normale Wackeligkeit 1. Ordnung.

W. Wunderlich, Wien

LITERATURVERZEICHNIS

- 1 M. Goldberg: Unstable polyhedral structures. Math. Mag. 51, 165-170 (1978).
- 2 H. Liebmann: Ausnahmefachwerke und ihre Determinante. Sber. Bayer. Akad. Wiss. 1920, 197-227.
- 3 W. Wunderlich: Starre, kippende, wackelige und bewegliche Achtflache. El. Math. 20, 25-32 (1965).
- 4 W. Wunderlich: Starre, kippende, wackelige und bewegliche Gelenkvierecke im Raum. El. Math. 26, 73-83 (1971).
- 5 W. Wunderlich: Wackelikosaeder. Geometriae Dedicata, im Druck.
- 6 W. Wunderlich: Neue Wackelikosaeder. Anz. Öst. Akad. Wiss. 117, 28-33 (1980).
- 7 W. Wunderlich: Zur projektiven Invarianz von Wackelstrukturen. Z. angew. Math. Mech., im Druck.
- © 1982 Birkhäuser Verlag, Basel

0013 - 6018 / 82 / 060153 - 11\$1.50 + 0.20 / 0