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Abstract—Coupler curves, generated by

1. INTRODUCTION

Let LABM be a planar four-bar linkage with fixed pivots
L, M and moving joints A, B. Any point C, rigidly
connected with the coupler AB, traces, in the course of
the motion of the mechanism, a so-called coupler curve
(Fig. 1). This is, in general, a tricircular sextic, i.e. an
algebraic curve of sixth order which has two imaginary
triple points at the circular points I, J at infinity. The
corresponding tangents (asymptotes) intersect in three
real “singular foci”, namely L, M and N.

The famous theorem of S. Roberts states that the same
coupler curve k may be generated in a similar way by two
other four-bars having their pivots in L, N or M, N. The
pivot triangle LMN and the coupler triangle ABC are
directly similar.

Besides the triple points I and J which count for three
double points each, the coupler sextic k has three proper
double points D\, D, Ds, situated on the “focal circle” f
which passes through L, M, N (Fig. 1), provided these
points are not collinear (Section 7). A fourth double point
D, arises only in the case of a flattening four-bar.

In a recent paper[l] K. H. Hunt and J. E. Kimbrell
considered the phenomenon of coalescing double points
D,=D,=D; (# D). In such a case the coupler curve k
osculates with itself at a point S, having there the focal

Fig. 1. Coupler sextic generated by a four-bar linkage.
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a planar four-bar linkage and possessing the peculiarity of self-osculation,
are generally discussed. Condition formulas characterizing appropriate linkages

are developed.

circle f as common circle of curvature for both of the
branches of k. The authors gave a simple construction of
linkages generating symmetrical coupler curves of this
kind, but doubted the existence of unsymmetrical self-
osculating coupler curves.

The present note will show that in fact unsymmetrical
coupler sextics with self-osculation do exist. If the pivot
triangle LMN is given, only three osculation points S, S,
S" are possible. They form a well-determined equilateral
triangle inscribed in the focal circle f, and to each of
them belongs a one-parametric family of self-osculating
coupler curves. —A final remark discusses the limit case
of collinear coupler points A, B, C. In this case the focal
circle f degenerates into the base line LMN, the oscula-
tion point S is uniquely determined (at the centre of
gravity of the point triple L, M, N). The corresponding
coupler curves are symmetrical with respect to the
common inflection tangent f at the inflection point S.

2. ANALYTIC CONCEPT

Starting from a Cartesian coordinate system (L; x, ¥)
whose x-axis passes through M, we pass to isotropic
coordinates

=x+iy, z=x—iy (with it=-1). 2.1

With real quantities x, y the complex number Zz
determines a vector represented by the line segment
from the origin L(0,0) to the real point P(x,y) (3], p-
31).

Denoting the side lengths of the ¢ quadrilateral LABM
with LA=a, MB=b, AB=c, LM = d (all values real
and positive) and the corresponding vectors with com-
plex numbers LA = u, AB=v,BM=w, LM=d (= d),
we have (Fig. 1):

utv+w=d lu=a [o|=c [|w=b. (2.2)
The position vector LC of the coupler point C is then
described by

z=u+ my with |m| = AC:AB, argm=a=<BAC

(2.3)

The relations (2.2) and (2.3) with variables u, v, w and
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constants a, b, ¢, d, m give a simple analytic represen-
tation of the coupler curve k (3], p. 67).
Introducing the conjugates we get from uit = a® and
ww = b with
u=z-mo, w=z—d+no (m=m-1) (24
two linear equations for v and o. Substitution of the
calculated values in vé = ¢” leads at last to the following
equation of the coupler curve in isotropic coordinates z,

([3], p. 68):

[i(z - d)P — mzQ]-[n(z — )P — mZQ] + ¢’R*=0 with

P =i+ mict—a’, Q=(z—d)(Z-d)+niic’- b?,
(2.5)

R = (it — m)zZ + (mnz — mAZ)d, n= m-—1.

The equation R = 0 describes a circle, as zZ = x> +y%
It is easy to confirm that this circle passes through the
pivots L(z=2=0), M(z= z=d) and N(z=md, Z=
rd). Hence R =0 is the focal circle f, provided m# m.
In the special case m = rii the points A, B, C are col-
linear, and so L, M, N too; here R =0 represents the
base line z=Z (y=0).

3. DOUBLE POINTS OF THE COUPLER CURVE

To find the three (ordinary) double points of the cou-
pler curve k (2.5), we have to cut it with the focal circle

f:

R = (i — m)zZ + (mnz — maz)d = 0. 3.1
This leads to the equation
i(z—d)P-mzQ=0 (3.2)

or the conjugate (which would furnish the same result).
In order to parametrize the circle f (3.1), we put 2zZ=75s
and obtain—under the assumption m# m—:

mns — mn mns — mn
=—0d d

| (3.3)

m-m Z= (m-m)s
With these expressions eqn (3.2) reduces to
nii(s — 1)P = (rans — mi)Q. (3.4

After developing the quantities P and Q from (2.5) we
arrive at a cubic equation of the form

Es®— Fs>+ Fs — E =0 with

E=m’n’id’, (3.5)
F = nii(mn + mn + mi)d’

+(m — m)*n(mic* + mb* — fia®).

Each one of the three roots s; (j = 1, 2, 3) determines by
means of the formulas (3.3) the isotropic coordinates z;,
7; of a double point D; of the coupler curve.

In the case of three real and distinct double points D,
D,, D (Fig. 1) the parameters s; satisfy the relation

518,83 = E|E = (m|m)*(iln). (3.6)
Denoting the argument of the complex number z; by o;
(=4<MLD;), we have args;=arg (z/%) =20; With
attention to argm = a ={BAC=<MLN and argn=
7—B=mn—%CBA=m—-4<NML it follows from eqn
(3.6):

Wa,+ 0yt 03)=4a +2P (mod 2). 3.7
As 20; measures the circle arc MD; on f, 2a the arc MN,
and 2 the arc NL, eqn (3.7) means (modulo the circum-
ference):

3 arc MD; = arc MN +arc ML. (3.8)

Replacing the initial point of arc measuring, M, by any
other point P of f, it holds also

S arc PD; = arc PL +arc PM +arc PN. (3.9
This result, compatible with a theorem of A. Cayley,
provides certain information about the distribution of the
double points on the focal circle.

4. SELF-OSCULATING COUPLER CURVES
Coupler curves with self-osculation are distinguished
by the property that all three double points D; coalesce
in a single point S on the focal circle f. In this case the
cubic equation (3.5) must have the form

(s —p)’ =2’ = 3%’ +30u’s -’ =0. @4.1)
Comparison of the coefficients requires

E:F:F:E=232u:3 00, @4.2)
The triple root s = u/A is determined, in accordance with
eqn (3.6) by
s* = E|E = (m|m)*(iiln). @3)

This equation has three solutions s, s', 5", differing by the
factor € = %(—1+i\/3) oree=1le=¢

The numerical evaluation may be performed by means
of eqn (3.7) and gives

s = €2 =cos 20 + i sin 20 with o= %(Za + B)(mod =/3).
4.4

As o = XMLS, we see (Fig. 2): For a given base triangle
LMN only three osculation points S, S', S" are at our
disposal; they form an equilateral triangle, inscribed in
the circumcircle f of LMN. Making use of eqn (3.9) with
P=S, S, S" we can add: Each one of the three oscula-
tion points has vanishing sum of arc distances from the
pivots L, M, N.

After having decided upon one of the three possible
values of s which satisfy eqn (4.3), we have still to take
into account the rest of eqn (4.2). Thus we obtain the
essential condition for self-osculation:
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Fig. 2. Distribution of foci L, M, N and self-osculation points S,
S', §" on the focal circle f.

F=3sE, 4.5)
where E and F are to be taken from the definitions in
(3.5). This complex condition (equivalent to its con-
jugate) induces two real conditions, corresponding to the
real and the imaginary parts. These (necessary and
sufficient) conditions are linear in a’, b2, ¢?, d*. Hence:
For each one of the three disposable osculation points S,
S', S" on the focal circle there exists a one-parametric
family of self-osculating coupler curves.

3. EXAMPLE

Prescribing for instance m = i, we have n = i-1,a=
90°, B =45°, and the quantities E, F of eqn (3.5) are

E=2(1—i)d2,
. 6D
F =8a%—4(1+ i)b* +8ic> = 2(1+ i)d".

The key equation (4.3) reads s> =i and has the roots
; , 1 ) . 1. '
s=—i, §'=3(V3t+i), s'= 5= V3). (52)

First case. With s=—1i the osculation point S (3.3)
coincides with the pivot L (z=0). Condition (4.5)
requires

207 = (1+ )b +2ic* + (1 + )d* =0, (5.3)
hence
21— b2+ d*=0, —b*+2c7+d*=0. (54
If we choose the values of ¢ and d, we find
a=c¢, b=VQ+d). .9

By means of Roberts’ theorem it is easy to state that the
obtained coupler curves are symmetrical ones. Figure 3
shows a particular example; the curve belongs to the
same family as that of Fig. 7(a) in [1].

Second case. Using the value s’ of (5.2), we find for the
osculation point S’ the coordinates x = 13+V3)d, y=
}(3—V/3)d. Condition (4.5) reads

m=i
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Fig. 3. Symmetrical self-osculating coupler curve.

8a2—4(1+i)b*+8ic* —[(5+ 3V3)+(3V3-9)ild* =0
(5.6)

and is to satisfy by

L=+ WO 4, bP=2+(BV3=5)d4 G)
The coupler curves of this family are not symmetrical, as
there does not exist an axial symmetry which would
permute the singular foci L, M, N and leave S’ fixed. The
particular example in Fig. 4 possesses an additional
double point Dy, as (by chance) the four-bar is flattenable
(a+d=b+c).

The third family of self-osculating coupler curves,
corresponding to the value s" in (5.2), proves to be
congruent to family 2; this is again a consequence of
Roberts’ theorem.
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Fig. 4. Unsymmetrical self-osculating coupler curve.
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6. ISOSCELES COUPLER TRIANGLES
In order to carry on developments in the simple case
of an isosceles coupler triangle ABC (and base triangle
LMN), we may assume a = # 0 and put

m= %(1 +ih) with h=tan a#0. 6.1)

With respect to n=m—1=—m we obtain from eqn
(3.5):

E = —mm*d®, Flm=h*(ma’+mb’ - mric’)

— mi(m*+ mm +m*)d’.  (6.2)
Equation (4.3) then gives the three possible values of the
osculation parameter

s=mlm, s'=¢s,s" = €S

3
with e=%(—l+i\/3). B

Symmetrical case. Using the value s = m|m, we find
that the osculation point S coincides with the focus N.
Condition (4.5) reduces to F + 3m*m’d® = 0 and requires

ma? + mb> = mm(c> — d°), 6.4)
hence
2 _ 2_1+h2 2 _ 2—C2__d2
a’=b = (c d)_4cosza' (6.5)

As the arms LA and MB have equal length a = b, the
coupler curves are symmetrical and belong to the kind
considered by Hunt and Kimbrell [1]. They were fur-
tively mentioned already by Miiller [2], whose cor-
responding formula is equivalent with (6.5).

Example: Taking for instance h = 1 (e =B =45, we
would obtain the same coupler curves as in Chapter 5,
only generated by other four-bars. In particular the curve
of Fig. 3 would be found with a = b=V2, c=2V2,
d =2 (see also Fig. 3 in [1]).

Unsymmetrical case. Operating with the value s'=
em/m, the condition (3.5) leads over F +3em*m*d* =0
to

h:(ma’® + b* — mmc®) = Kmmd® with
(6.6)

K %[(9 + B =3V + k)il

Separation of imaginary and real parts gives the relations
b>-a*=pd®, a*+b*— %(1 + h¥)c? = qd’,

where 6.7)

" _3V@R) 1L+ k)

3 (Y L 1)
6h*

16k

Choosing the values of ¢ and d we finally obtain the
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formulas
2_1+h2[ . 1( _\/3)’ 2]
a’=— c +8 1 & d- |, o5
2—1+h2 ’ l( \/3)3 2] |
b”= A [c +8 1+ I d |

The corresponding coupler curves are not symmetrical.
They are congruent with those which would be obtained
with the third possibility in (6.3): "= ém/m; in this case
the formulas (6.8) for a and b interchange.

Examples: Prescribing for instance a = g =30°, we
have to take h =1 V3 and formulas (6.8) reduce to

2 1 2 2 2 1 2 2
a2==(c*-d%, b>=z(c"+8d). 6.9)
3 3
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Fig. 6. Degenerate coupler curve, consisting of a quartic and a
circle. Four of the five double points coincide.




Figure § illustrates the choice c=3,d=1(a= V(8/3),
b =4/(17/3)). The coupler curve consists of two parts.
__The choice c=2,d=1(a= 1,b=2)leadstoa kite. In
this case the coupler sextic splits into a circle with center
M and a bicurcular quartic with a double point at §',
where it is touched by the circle (Fig. 6). Here no
self-osculation takes place, although §'=D,=D:= Ds
and yet a fourth (extraordinary) double point coincides
with §' (x=0, y=—1iV3).

7. SELF-OSCULATING WATT CURVES

In order to complete the investigation, we shall discuss
also the case of collinear foci L, M, N, until now
excluded by the assumption m# /. In the present limit
case m=nm (#0, #1) is a real number and the coupler
points A, B, C lie on a line. The coupler curve k, traced
by C and sometimes denoted as a “Watt curve”, is
symmetrical with respect to the base line LMN. This line
is to be considered as the limit form of the focal circle f,
whose equation (3.1) reduces to z= 7 (y=0).

To determine the double points of k, obviously lying
on the focal axis f, we use the abscissa x as parameter on
f. Substitution of z= 7 =x ineqn (3.2) leads to the cubic
equation

n(x — d)(x* + m*c* = a*) — mx{(x = dy +n’c’=b*1=0.

(7.1)
It reads, after arrangement,

Y -Ex*+Fx-G=0 (7.2)
with

E=(m+1)d, F=na’- mb?> — mnc’ + md,
G = n(a*—m’c’)d.

The roots x; (j=1,2,3) localize the three double points
D; of the coupler curve. From the relation

x,+x2+x,=E=(m+1)d=fM+Zﬁ (71.3)

we conclude that both of the point triples Dy, D, D; and
L, M, N have the same centre of gravity. This statement
gives certain information about the distribution of the
double points.

In the case of coincidence of all double points D; in
one point S on f, we have self-osculation of the coupler
curve k. Two branches of k, mirror images with respect
to the focal axis f, intersect each other at the common
inflection point S and have there the common tangent T
In this case eqn (7.2) will be equivalent with (x - 51 =8,
where s denotes the abscissa of S, the centre of gravity
of the focal triple L, M, N. Comparison of corresponding
coefficients gives the relations

3s=E 3s*=F, =G (7.4)

which lead (by elimination of s) to the essential con-
ditions

3JF=E%, 21G=E’. (7.5)
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Fig. 7. Self-osculating Watt curve with two axes of symmetry.

Fig. 8. Self-osculating Watt curve with a single symmetry.

By means of the definitions (7.2) we finally obtain two
relations linear in a’, b’, ¢, d*

na’—mb?—mnc®=(m*—m+ 1)d*/3,

na’—m2nc’ = (m+1’°d’27. (7.6)
Prescribing now ¢, d and m, the arm lengths a and b are
determined by the formulas

5 2.3 (m+l)3 2 2_ 2.2 (""1)3 2
a—mc+————27n d-, b—nc+———27m . 1D

Examples: Equal arm lengths a = b will be obtained
with m=1/2 (n=-1/2). In this case formulas (7.7)
reduce to

gz b= }1(02 _ P (18)

and the coupler curve possesses tWo axes of symmetry
(Fig. 7). On the contrary, for m# 1/2 and m# +2, there
exists only a single symmetry with respect to the focal
line f = LMN (Fig. 8).
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SELBSTOSKULIERENDE KOPPELKURVEN
W. WUNDERLICH

Kurzfassung - Die drei gewohnlichen Doppelpunkte einer ebenen
Koppelsextik k liegen bekanntlich auf dem Umkreis f des Lager-
dreiecks IMN, das zum Koppeldreieck ARC ghnlich ist. Selbst-
oskulation von k tritt auf, wenn die drei Doppelpunkte an einer
Etelle S von f zusammenriicken, und f ist dann Kriimmungskreis
fiir zwei Zweige von k. Es zeigt sich, daB bei Vorgabe von LMN
nur drei Punkte von f in Betracht kommen, wo Selbstoskulation
stattfinden kann. Diese Punkte S,S5',S" bilden ein gleichsei-
tiges Dreieck, und zu jedem von ihnen gehort eine einrarame-
trige Familie von selbstoskulierenden Koppelkurven. Fir die
Abmessungen der betreffenden Gelenkvierecke werden Formeln ab-
geleitet. Auch der Grenzfall kollinearer Lagerpunkte L,M,N
wird untersucht.






