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I._FUNDAME NTALS

1. Introduction

The proposed problem concerns in first line the determin-
ation of plane curves g which by a certain inversion 1 are
mapped onto a congruent copy ¢°. When o denotes the isometric
mapping which brings ¢ back to ¢, then ¢ is obviously invar-
iant under the product mapping p=o1. This mapping u, composed
of first 1 and then o, is well-known as "Moebius mapping".
Attacking the problem from this point of view, it can be sys-
tematically and completely solved.

In this preparatory Chapter I the needed facts about inver-
sion are summarized and then applied to construct self-inverse
curves q =q°. Furthermore, the concept of the Moebius trans-
formation -- conformal and circle-preserving like inversion --
is briefly discussed.

The method applied afterwards is analytic and makes use of
the Gaussian (or Argand) plane of complex numbers, as this is
the best tool for conformal mappings. Two main cases have to be
distinguished, depending on the kind of the isometric trans-
placement o. If o is an opposite isometry, then uy is a directly
conformal mapping (Chapter II). If 0 is directly congruent,
then u is indirectly conformal (Chapter III). Provided p has
a real fixed point, an auxiliary inversion x from this center
transforms p into a linear mapping p¥, i.e. a similarity or an ;
isometry. Thus the original problem is lead back to the simpler |
question for curves ¢* invariant under p*. There is only one v
subcase (Section 13) which needs an individual treatment, because
u has no real fixed point. By means of an appropriate inversion k ;
the Moebius mapping u in this case can be transformed into a i
special one, ¥, which consists of an inversion and a rotation |
about the inversion center (Section 12).

In this way the problem in all cases is led back to the
question for curves @which are invariant under a simple trans-
formation p* (similarity, isometry, cyclic Moebius mapping) .
This question leads to simple functional equations, solvable



by certain periodic functions. As the form of such a periodic
function may be arbitrarily chosen within a period interval,
infinitely many explicit solutions are obtainable. They enlarge
unlimitedly the small number of known examples. Special atten-
tion is paid to algebraic solutions; most of the numerous illu-
stration figures show algebraic exa mples. The typical periodic
structure of the solution curves q is due to the fact that an
elementary arc of g is repeated by successive application of
the automorphism ..

A supplementary Chapter IV demonstrates the use of stereo-
graphic projection and of so-called fan transformations for

deriving additional solutions.

2. Inversion

For better understanding it may be welcome to recall the
definition and some fundamental properties of the inversion,
in spite of the circumsta rce that this classical transformation,
important in higher geometry and applied mathematics, is ex-
cellently treated in many lecture books, e.g. [2].

Planar inversion with r8spect (or "in") a real circle j (cen-
ter 0, radius a>0) is a one-to-one point mappingwhich associ-
ates to each point P#0 its image point P’, defined by the
following rule: P,P” and O ark on the same line, and the ce rbral
distances OP =r and OP’ =r’ are reciprocal, if a is considered
as length unit (rr’ =a?). Hence, in polar coordinates r,¢ with

origin 0, &he inversion 1: P+P’ is described by
(2.1) r’ = a?/r, 6" =6.

In cartesian coordinates x = rcosd, y = r sind the transform-

ation formulas read
2

2
’ a x 2 . 85
(2.2) X =_2__x +y7| y Xty *®

Fig.1 shows a simple construction of inverse point pairs. Evid-
ently, each point of the "inversion circle" j (r=a) is fixed,
i.e. mapped onto itself (C=¢C’ in Fig.2).
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Fig.l: Inversion - J Fig.2: Inversion of a line

The most important (and well-known) properties of the inver- ,

sion are the following:

(i) Inversion is an involutory mapping: If P’ is the image
of P, then Q=P" has its image Q” at P (Fig.1). In other words:
Repetition of an inversion 1 produces the identity (12 =11"),

(ii) Inversion is a quadratic mapping. When a variable point
P moves along a straight line 1, not passing through 0, its
image point P’ describes a circle 1°. Choosing the x-axis per-
pendicular to 1 (Fig.2), the polar equation of I is rcosd =b #0;
due to (2.1), the polar equation of 1’ reads r’ =b"cos ¢ with
b’ =a?/b and characterizes 1° as a circle passing through 0
(Fig.2). Therefore it is convenient to consider 0 as image U’
‘of the point at infinity, U, of 1. -- A line s passing through

the inversion center 0 is mapped onto itself (s=s", Fig.2).

(iii) Inversion is a conformal mapping, i.e. angle-preserv-
ing. The angle of two curves ql,qzat a common point P#0 is re-
produced at P’, where it reappears as the angle of the image

curves qi,q%. This fact is an almost immediate consequence of

v




the reproduction of the armgle 6 made by a line I and a radial
ray s (Fig.2). It should be noticed, however, that only the
size of an angle is preserved, whereas its sense of orientation

is inverted: inversion is "indirectly conformal".

(iv) Orthogonal circles
of the inversion circle j
Due to the

power theorem, such a

are invariant.

circle o is mapped onto
itself,

ing of the parts inside

with interchang-

and outside of j (o =0"
in Fig.3).

(v) A circle h, meeting

the inversion circle j in

opposite points, is mapped

onto a congruent circle
h’ ~h (Fig.3). This is

again a consequence of

.

——

Fig.3: Self-inverse and
congruent-inverse circles
the power theorem.

(vi) Inversion is a circle transformation, i.e. cercle-
:

preservingf any circle k, not passing through 0, is trans-
formed into a circle k’ again. A simple proof consists in
applying a dilatation 7 = Ar onto an orthogonal circle o of j

(iv) or onto a circle h (v); the image k’ of k is then related
with o’ =o or h’ =h by the dilatation r’=r’/x,

__ A circle which passes through O is mapped onto a

hence also a
circle.
line, due to (i) and (ii); therefore it is convenient to con-

sider lines as 1limit forms of circles.

(vii) Invariance of inverseness: If two points P ,P, are

inverse with respect to a circle k, their images

"pPi,P,, ob-

tained by another inversion 1, are jnverse with respect to the

image circle k’.

0,0 passing through P, and P,:

For a proof consider two auxiliary circles

as they are orthogonal to k,

their images o’,3 " are orthogonal circles of k”, hence the
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statement is true. -- Corollary: If the center O sf the inver-
sion 1 is on k, then k” is a line, and P%.P{ are mirror images
with respect to k”.

Other properties of the inversion are revealable only in the

complex pfojective plane and shall not be discussed in detail.

They concern, for instance, the role of "isotropic lines" x tiy =

- const and their points at infinity, the "absolute circular

points" I and J (in common to all circles of the plane and there-

fore invariant under isometries and similarities). These points
show a similar behavior under inversion as the center 0. Each
one of the three exceptional points 0,I,J has no definite im-
age, but a whole range of possible image points: The image of 0
might be any point at infinity, the image of I any point on the
isotropic line OI, and the image of J any point on 0J. Convers-
ely each point at infinity U #I,J has the image U” =0 (Fig.2),
each point V#0,I on the line OI has the image Vv’ =1, and each
point W #0,J on 0J has the image w’= J. These facts may be con-
firmed by means of equs.. (2.2).

the exceptional (or "principal") points 0,I,J are important
for judging the order and certain singularities of the inverse
image ¢° of an algebraic curve gq. If, for instance, q is a curve
of order n and contains none of the exceptional points, then its
image ¢° is a curve of order n” =2n (due to the quadratic char-
acter of the inversion) and possesses n-fold points at a, 1,
and J. If however a (real) algebraic curve g has an sy,-fold
point at 0 and s-foldpoints at I and J, the order of q" re-
duces to n” =2n -s5,- 25, 0 has the multiplicits n -2s,, whereas
both I and J have the multiplicity n -s,. Properties (ii) and

(vi) are now seen from a higher point of view.

3, Self-inverse Curves

In general, a curve q and its image ¢’. obtained by an in-
version 1: P> P’, are completely different. However, it may occur
under particular circumstances that ¢ and ¢ coincide. The
simplest example, apart from the inversion circle j=j", is of-

fered with the orthogonal circles o =o0’, as mentioned in Sec-



tion 2 (iv). Such self-inverse curves q =q’ are called, with a
traditional term, "anallagmatic" [3, p.AO].

Now, if an anallagmatic curve q =q” is transformed by means
of an additional inversion k: p+ P¥, whose center kK is situated
on § (Fig.4), then, due to the corollary of property (vii), its
image ¢* = ¢'* will have the image line j* of j as mirror axis.
Conversely we have

Theorem l1: Anallagmatic curves q=q  are obtained by invert-

ing an arbitrary curve q* which is symmetrical with respect to

an axis j*, provided the inversion center is not on j*.

Fig.4: Anallagmatic quartic
inverse to a parabola
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Take, for instance, as initial curve q* a common parabola,
then -- due to the final remark in Section 2 -- the inverse im-
age g is an algebraic curve of order 4, having a cusp at the
inversion enter K and moreover (imaginary) double points at
the absofute circular points I and J: it is a cusped "bicirc-
ular quartic", self-inverse with respect to the image circle j
of the parabola axis j*. Slim curves of the kind shown in Fig.4
(kK outside of g¢*) and also in [1, p.367] once were suggested
as streamline profiles (N.JOUKOWSKY, 1910).

Fig.5: Doubly anallagmatic cubic
"inverse to a hyperbola

A central conic g (different from a circle) has two mirror
axes and therefore generates a doubly anallagmatic curve q,
provided the inversion center K is not situated on one or both
of the axes. If ¢* is a hyperbola, ¢ has a real node at K
(Figs. 5,6)3 if g% is an ellipse, K is an isolates double point
of ¢ (real, but with imaginary tangents, Fig.11). Supposed
the conic ¢¥ doesnot pass through the inversion center Kk, then

P



its inverse image q is a bicircular quartic. On the other hand,
if K is on ¢*, then ¢ is a (mono)circular cubic; Fig.5 shows
for example a so-called strophoid [3, p.37], derived from an
equilateral hyperbola. -- Supposing the inversion center K on
(only) one axis of the conic ¢¥, the derived curve q has the
same mirror axis and admits only a sole (not degenerate) self-
inversion. In particular, if K is a focus of ¢ (Fig.6), the
resulting bicircular quartic ¢ (with cusps at the circular
points I and J) is the well-known Pascal snail ("limagon"), a

special trochoid and also a special circle-conchoid [3, p.88].

/

Fig.6: Pascal snail
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Every axial curve q* possesses a continuous set of bitangent
circles o*, centered on the mirror axis j* and thus orthogonal
to j*. Consequently, any derived self-inverse curve q=gq  is
also endowed with a set of bitangent circles o =0, orthogonal
to the circle j of self-inversion and touching ¢ at sorrespond-
ing points P,P” (Fig.4). This leads to the classic

Theorem 2: FEach anallagmatic curve is the envelope of a one-
parametric set of circles orthogonal to the circle of self-in-

version.

Such a set of circles may be determined by the locus f of
the circle centers, the so-called "deferent”., This offers another
mode of constructing anallagmatic curves. Having chosen a defer-
ent f which is not completely contained in the inner region of
the inversion circle j, any point M of f and outside of j de-
termines a real orthogonal circle o of j. The contact points P,P’
of this circle o with the envelope ¢ are found on the perpend-
jcular dropped from the inversion center O onto the tangent ¢
of f at M (Fig.6). The contact points coincide (on the invers-
ion circle j), if ¢ is a common tangent of f and j; such a self-
corresponding point 4 =4" is a vertex of ¢, and the associated
circle o represents a hyperosculating circle of curvature (Fig.4).
Generally, each circle of curvature of a curve is mapped onto
the corresponding circle of curvature of the inverse curve;
this rule offers a valuable help for the designer.

Any intersection point F of the deferent f with the inversion
circle j produces a bitangent point-circle and is a focus of
the anallagmatic curve g. According to J.PLUECKER’s definition,
the ordinary foci of an analytic curve are the intersection
points of isotropic tangents with proper contact points; they
are to distinguish from extraordinary foci, which are the inter-
sections of isotropic asymptotes. Since isotropic lines x tiy =
= ¢ are inverted into isotropic lines x5 iy’ =c¢’ -- see equs.
(2.2) --, the ordinary foci of inverse curves are correspond-
ing points (Fig.4). Such a correspondence doesnot hold for
extraordinary foci because of the exceptional character of the

contact points I,J of isotropic asymptotes; thus, for instance,
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the centers of inverse circles in general are not associated
by the inversion, although they lie on a ray through the in-
version center.

An analytical solution of the problem of anallagmatic curves
will be found in Section 12. One simple example may be mentioned
already here: The curve g, defined by its polar equation

(3.1) r = a-cot(¢/2),

is obviously self-inverse, as the points P,P’ with the coordin-
ates ¢,r and ¢" = ¢+n, r” = -a-tan(9/2) are corresponding in the
inversion (2.1). The curve has the cartesian equation (x2+ y2)x
X(y -2a) +a’y =0 and is the symmetrical strophoid [3, p.37];
this cubic could be obtained by inverting an equilateral hyper-
bola from a vertex (compare Fig.5).

4, Moebius Transformations

One of the historic ideas of C.F.GAUSS was the visualizat-
ion of complex numbers z =x+iy by the real points P(x,y) of
the Cartesian plane (published in 1831, but used already in
the thesis of 1799). This concept, developed also by J.R.ARGAND
(1806) and C.WESSEL (1797), became the base of complex function
theory.

Conversely, every point P(x,y) of the real plane may now be
fixed by a single (but complex) number z = x + iy which unites
the (real) cartesian coordinates of P. If P is given by means
of polar coordinates r,d$, the "Gauss coordinate" z is determ-
ined, with use of L.EULER’s famous formula, by

(4.1) iwxtgpw elcondtioing) = poe’®

Fundamental operations with complex numbers turn out to be
represented by elementary mappings in the Gaussian plane [2].
Thus the addition of a constant b to a variable number z means
a translation z +z’ =z +b, whose translation vector is determ-
ined by the arrow from the origin 0 (z=0) to the point B (z"=5).
Multiplication with a constant c = —_— means, due to (4.1), a
similarity z--z" = c.z which is composed of a rotation about 0

with the angle a=argc, and a dilatation from 0 with the fac-

- 10 -
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tor a=|c|. Passing from z (4.1) to the conjugate 3= x - iy =
= r-e—i¢ means the reflexion in the x-axis (which is the locus
of all real numbers z=2).

As to the inversion 1: P>P’, introduced with equ.(2.1), it

is described in complex notation by

{4.2) z” = a’/3z or %z’ = a?
Inversion with respect to an arbitrary circle (center B, radius

c=¢&>0) is represented in the form
(4.3) z'-b= c?/(E-b) or 2z’ -bz-bz+bb-c? = 0.

The composition of two or more inversions leads to a so-cal-
led Moebius transformation [2, p.207], named after F.A.MOEBIUS
(1855). Such a mapping is still conformal and circle-preserv-
ing like all of the component inversions, but in general no
longer involutory. It is directly conformal, if the mmber of
the inversion components is even, and indirectly conformal, if
this number is odd. A Moebius mapping up: P+ P’ of the first
kind is always representable in the form

. az tb , . -
(4.4) B’ o SSTS Or cEx -az+dz” -b = 0,

with the natural restriction D=ad-bc# 0; otherwise z” would
be independent of z. It is easy to confirm that the product of
two direct Moebius mappings u, and uy, is again a transform-
ation p,; =w,p, of the same kind. Hence, all direct Moebius
transformation constitue a group (with six real parameters).

On the other hand, the indirect Mcebius transformations,
described by

(4.5) 2 = 2228 or 52’ —azsdz’ -b - 0,

do not form a group, as the composition of two of them pro-
duces a direct Moebius mapping.

In the special case ¢ =0 equ. (4.4) reduces to z” = (az+b)/d,
and p is then a direct similarity, in particular a congruent
transplacement, if |a/d| =1 (|al| =|d|). Ana logously, the map-
ping (4.5) reduces with ¢ =0 to an opposite similarity, in

particular to an indirect isometry, if |al| = |d]|.
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For ¢ #0 the point z,=-d/c is an exceptional point of the

mapping v (4.4), as its image 2z;= o is indefinite on the line.

at infinity; in the terminology of function theory z,is a Ppole" .
Supposing this pole at the origin -- a situation always achiev-
able by appropriate choice of the coordinate system -- we may
simply assume d =0 and ¢ =1, so that p is described by z"=a +(b/z).
We learn from this reduced form (and so from the corresponding
form in the indirect case) that a true Moebius mapping applied
to a curve doesnot produce other shapes than a simple inversion

would do.

Be Analyticallpreparation

Let ¢ be a plane curve which by a certain inversion 1 is
mapped onto an indirectly congruent copy ¢’z q. When o denotes
the isometry which brings ¢” back to g, then u=o01 is a direct
Moebius transformation which maps ¢ onto itself. Herewith the
question for indirectly congruent-inverse curve pairs q.q is
lead back to the determination of curves q which are invariant
under a given direct Moebius mapping Uu. '

Locating the center 0 of the inversion 1 at the origin of a

Gaussian plane, the inversion 1:P *P’ is described by
(5.1) z” =a%/z with a=3>0.

An opposite isometry o may always be composed of a reflexion
in a certain line h and a translation along h [2, p.193]; the
direction of the mirror axis h is indicated by the sum of two
corresponding vectors. Choosing the x-axis parallel to h, the

opposite isometry 0:P™>P" may be written in the form
(5.2) z" = z’+b with b=b"+1ib".

Writing this "glide-reflexion" in cartesian coordinates, it

reads
(5.3) x" = x"+ b, y" = -y"+ b".
We see that the mirror axis h is determined by y'=y"= b"/2

and that the translation vector is given with b”".



Combining equs. (5.1) and (5.2) we find that the Moebius
mapping Ol =u: P>P” is described by
2
(5.4) z"=£z—+b or zz" -bz-a? = 0.
Firstiof all let us ask for the fixed points z =2z" of u. They
are determined by the solutions of the quadratic equation
(5.5) z? - bz - a? £ 07

Hence there exist two real fixed points M =M" and N=N" (Fig.7)

given by their Gauss coordinates

1
(.6) z, = §(b+R). z’=%(b-R) with R2 =b? + 4a?.

These values satisfy the relations

(5.7) z,+z,=b, z,z,=-a’=2,2,

Fig.7: Direct Moebius mapping composed of an
inversion and a glide-reflexion



Passing now by means of the translation 0+ N to a new system

of Gaussian coordinates

(5.8) L =z-2, (g" =2"-2z2,),

the transformation formula (5.4) may be written as
(5.9) gL - 2,0 +z,t" = 0,

The fixed points M and N are now given by ¢, =z, -z, =R and
t, =0, respectively. They are distinct points for R#0.

In a next step we apply an auxiliary inversion K: p>P¥ (p"sp"¥)
with arbitrary radius ¢, but having its center at N (Fig.7):

(5.10) ¥ m e L (e = E2L7),

Hereby the Moebius mapping p (5.9) is changed into a linear

transformation kuk = p*: P¥>p"  described by
(5.11) B, 0" -4, g™ et = 0,

This mapping w* is a direct similarity, whose fixed - point m*
is given with cf =ci/(2l -z,) =c?/R, provided R # 0.

In the general case R#0 (b # *2ia) we introduce once more,

again by translation, new coordinates
(5.12) ot} (2%™-g).

Thus we finally obtain the "canonical" representatijon of u¥:

(5.13)  2,2-3,2" = 0 or 2" = AeZ with A=3,/% -

In general the similarity u* is composed of a rotation about
the fixed point M* (Z, =0) with the angle w=arg A and a dilat-
ation from the same center with the factor p = IAI.

For w#0 and p# 1 the similarity uv¥* shows a certain spiral
character [2, p.163] which becomes obvious by successive repet-
ition of the mapping, as then any point is transported along a
logarithmic spiral. The polar net about the fixed) origin M*
is, as Awhole, invariant under p¥, Returning to p by means of
the inversion ¥ (5.10), the pencil of rays issuing from M¥ is
transformed into the élliptic pencil of circles passing through
the fixed points M and N of pu (Fig.8), whereas the system of
concentric circlés about M* is mapped onto the hyperbolic

o A e



pencil of circles orthogonal to those of the elliptic pensil.
This consideration offers a good insight into the effect of a
direct Moebius mapping as illustrated in Fig.8, where the fixed

points M and N have been placed at +i and -i.

a®

Fig.8: Invariant circle pencils of a
direct Moebius mapping

By thk ehain of operations outlined above, the problem of
curves ¢ wHich aré invariant under a given Moebius mapping u
has been lead back to the question for curves ¢* which are in-

variant under a corresponding similarity p*. So we state

Theorem 3: A plane curve q which by a certain inversion
is mapped onto an indirectly congruent copy q’ is inverse

to a curve q* which admits a direct similarity or isometry.



This statemant proves to hold also in the postponed caseR =0
of coincident fixed points M =N (Section 8). The next sections
will show how to find the required curves g¥, invariant under

the respective linear mapping u*.

6, Main Case

Before attacking the question for curves ¢* which are invar-
iant under the direct similarity p* (5.13), it is advisable to
derive appropriate formulas for the characteristic constants p
and w of u¥. With attention to (5.7) we find

(6.1) p=IN =lzq/2) | =a%/2,5, =2,7,/a".

Denoting the argument of z, with B we have, due to (5.7),argzz:
= w -f, hence

(6.2) w=argh =-arg(z,/z,) =argz,- argz,=28-m (mod 2m).

This means, in geometrical notation, w=yNOM (Fig.7). Summariz-
ing the meaning of A=%,/%, (5.13), we note

Lemma l: The linear mapping p¥ (5.13) is indirectly congru-
ent to the direct.similarity which brings M to N and leaves 0
fixed.

The present section is devoted to the main case R#0(z, #z,)
with the additional assumption b’ =Reb # 0 which excludes the
possibility p=1: Due to the relations (5.7), p=1 would induce
2, « daiB, z, - -a-e" 1B and thus b - z,+z, = 2ia sin B without real
part. The alternative b’ =0 which reduces the isometry o (5.3)
to a pure reflexion will be treated in Section 7.

The wanted curve ¢¥, invariant under the "spiral similarity”
p*(5.13), may be described in parametric form Z = z(6). It will
admit (as a whole) the "automorphism" p*, if

(6.3) 2" () = p-et 2(6) = z(6+w).

In order to satisfy this relation, we write
(6.4) 2(8) = PPl u(s).

The condition (6.3) will be fulfilled, if we put
(6.5) p = eP¥

- 16 -
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and if the auxiliary function w(d) satisfies the functional

equation
(6.6) wio+w) = wie).

The sfibstitution (6.5) is admissible, if p= w'1lnp gives
sense, hence if p>0 and w# 0. Now, o =z,7,/a” is surely posit-
jve, since z z, = -a2#0; on the other hand, w=2B8 - n =0 would
suppose B =m/2 (mod n), hence z,, z, and z,+z, = b were purely
imaginary, which is excluded with b” # 0.

The remaining condition (6.6) means that w(d) is a periodic
function with the period w #0. Such a function may be chosen
arbitrarily by prescribing its values in the interval 0<é <w
with attention to the continuity restriction w(0) =w(w). Finally
the so conctructed auxiliary curve g¢* defined by equ. (6.4),
has to be transformed back in recurring the substitutions (5.12),
(5.10) and (5.8). The resulting curve g, obtained with

(6.7) z(¢) =

z“cﬁTzT z, with 75 = c?/R

- where R and z, are to be taken from equs. (5.6) --, represents

a solution of the proposed problem: it will produce a congruent

copy q°, if transformed by the jnversion 1 (5.1). In general

the auxiliary curve g¢* shows, due to the automorphic similarity

u*, a certain periodic structure: It consists of an infinite

series of similar elementary arcs. This fact induces a corres-

pondingly modified structure of the solution curve ¢ (Figs.9a,b).
Searching for closed analytic functions w(¢), we have, apart

from w(¢) = const, trigonometric functions at our hands. These

are, after introduction of the "module" m=rm/w, in first line

the functions cos 2mé, sin 2mé, and more generally

(6.8) w(d) = .Z (aicosjm6'+ bjsinjm¢)

o oven
with arbitrary complex coefficients a..bj. Making use of
Euler’s formula (4.1), w(o) might also be written as a sum of
exponential functions e1Im® ang o 1im
The simplest choice, w(®) =a, #0, leads to a logarithmic
spiral q* with the equation

(6.9) z = aoep¢ei¢.



Such a spiral is an isogonal trajectory (or "loxodrome") of

a ray pencil; in our case the spiral ¢F intersects all rays is-
suing from the center m* (z, = 0) under the constant angle 6 =

= arccot p [3, p.221]. Consequently the inverse image ¢ of g%,
whose equation would be obtained by means of formula (6.7),
will be a 6-loxodrome of the elliptic pencil of circles with
the base points M and N (Section 5). It may be called a "Moe-
bius spiral”, as it is a point path of a continuous one-para-
metric group of Moebius transformations; some specimens of

these double-spirals are to be seen in Figs. 8 and 9b.

m=4, j=-2; w=45°
JSEPI LS —_— p=1/2, 9=1481

Fig.9a: Cusped spiraloid admitting a group
of spiral similarities
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Fig.9b shows a less trivial solution, generated by aid of

the auxiliary function

(6.10) w(e) = a, +aje~""'i“’ (j even).

Fig.9b: Curve inverse to the spiraloid of Fig.9%a
and inverted into a glide-reflexion copy
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The corresponding curve ¢X (6.4) is a "spiraloid", introduced
by the author as a certain generalization of trochoids {5]. A

spiraloid is cusped (as in Fig.9a), if
(6.11)  lagl?: la 1% = [p2 + Gm+ 12T = (2 +1).

Such a cusped spiraloid may be generated as the envelope of a
variable line which rotates with constant angular velocity n =
=14+ (jm/2) about one of its points, whereas this point moves,
with the angular velocity 1 of its position vector, on a log-
arithmic spiral (6.9). The derived solution curve q is to be
seen (in larger scale) in Fig.9b together with its congruent-
inverse copy q’. It was constructed by means of the ortho-
gonal system of circles which corresponds to the polar net
about the origin M* (compare Fig.8).

The most general solutions will be obtained analytically by

a parametrization
t
(6.12) b = \ll(t) *Ev v = X(t)r

where the arbitrary functions w(¢), real, and x(t), complex,
have the common peribd 2n. This modification has the effect
that now the function &(0) is not necessarily univalent as those
functions which are given by a trigonometric polynomial (6.8).
For a particular example see (7.9). -- Another way of enlarg-
ing the number of solutions consists in performing certain
period-preserving operations with admissible functions w(4¢),
for instance by taking the reciprocal or any power or root of
a chosen function w(é), or by forming the product or the quot-
ient of two functions w‘(¢) and w,(¢). It may occur, however,
that hereby the primitive period will reduce; so w(¢) = tanmé
has already the period w.and thus satisfis the condition (6.6).
Finally, let us consider the situation when we start with
an arbitrarily chosen auxiliary curve q* which is, as required,
invariant under a spiral similarity u* (center M*, rotation
angle w, dilatation factor p), e.g. the spiraloid of Fi~.9a.
Applying now an inversion x with arbitrary center N # ¥* and
arbitrary radius c, we obtain from q* a curve g which will be

a solution of our problem, as it is invariant under the Moebius
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transformation p=kp*k. To reconstruct the inversion 1 which
maps q¢ onto a congruent copy ¢ we choose an arbitrary pair of
points P¥,p"¥ corresponding each other in the similarity p*.
Due to Lemma 1 and denoting with M the x-image of M#, we con-
struct €he triangle oyl indirectly similar to M*P*P"™ . Know-
ing now the inversion center 0, we find the inversion radius a
from a? = OM-ON and add the 1-images M°,N° of M,N. The mirror
axis h of the glide-reflexion ¢ is then parallel to MN" and NM’
and passes through the midpoints of the segments MM” and NN’
(Figs. 7 and 9a). The translation vector b’ of o is the conm-
ponent of M’i# (and N°N) parallel to h.

Now, with p* the initial curve q* admits also the spiral
similarities u*", n integer. Hence there exist infinitely many
possible inversion centers On. to be found in the exposed way
after replacing w by nw and p by o". It can be shown that all
these centers are situated on a Moebius spiral. For the proof
let us locate the points M and N at the points +1 and -1 of a
Gauss plane. For the Gauss coordinate znof On we have the
relation

n, _-inw _ e(p—i)nm

(6.13) ;P — E pree

Putting nw=¢, we see that all centers o, lie on a Moebius

transform of the logarithmic spiral r = e_p¢, that is a Moe-

bius spiral. -- After all, Theorem 3 may be completed by

Theorem 43 If an arbitrary curve qf which admits a spiral
similarity with the center Ht is inverted from an arbitrary
center N #H*, the resulting curve q can be mapped by an infin-
ity of suitable inversions onto an indirectly congruent copy.
The centers of these inversions are situated on a Moebius

spiral.

Applying this theorem to a logarithmic spiral ¢~ (6.9),
the angle w is arbitrary; hence the resulting Moebius spiral gq
is accompanied by another Moebius spiral g (of the same class)
and can be inverted from any center 0 on g into a congruent
copy ¢”= q.In particular, if ¢ is a Moebius spiral with a point

at infinity, § is identical with q.



7. Reflexional Case

This section is devoted to the postponed case b”= 0. Here the
constant b =b"+1ib", introduced in equ. (5.2), has a purely imag-
inary value b = ib". Consequently (see Fig.7), the opposite
isometry o: P’>P" (5.3) reduces to a pure reflexion in the
mirror axis h (y” = y" =b"/2). Apart from the limit case R=10
(which will be treated in Section 8) we have to distinguish
between two subcases depending on the sign of the (real) dis-
criminant R2? = 4a?+ b2 = 4a?-b"? in equ. (5.6).

First Subcase: |b"| <2a (R?>0, R real).

The Gauss coorciantes of the fixed points ¥ and N of the

Moebius mapping n (5.4) read, according with formulas (5.6):
(7.1) 2, =3(ib" +R), 2z, =3(ib" - R) with R?=4a® - b"%>0.

We state that the fixed points M and N are the intersection
points of the mirror axis h with the inversion circle j. Their
invariance under p is evident.

Furthermore we see, in accordance with Lemma 1 (Section 6),
that the x-transform of u, i.e. the linear mapping v~ (5.13),
is a fotation (p=1), whose angle w is determined by

(7.2) cos(w/2) = b"/2a.

This circumstance induces a cyclic symmetry of the auxiliary

curve q . Thus we obtain as a modification of Theorem 4

Theorem 5: If an arbitrary curve q , admitting a rotation
about its center M’ with an angle w, is inverted from an arb-
itrary point:N#M , the resulting curve q can be mapped by
suitable inversions onto a mirror copy q°. The base circles
of these inversions all pass through M and N (M corresponding
to M in the inversion q *q), and the chord MN is seen from

the circle center under the angle w or an integer multiple of w.

With p=1 we have p=0 in equ. (6.4). Hence the analytical
solution of the problem begins with the equation

(7.3)  2(8) = e ®.w(6) with w(o+w) = w(s),




where the arbitrary periodic function w(d) may be chosen in
the same way as in Section 6. The so determined auxiliary
curve ¢~ (7.3) has then to be transformed by means of formula
(6.7) to obtain a solution curve gq.

Due t& its automorphic rotation u , the auxiliary curve gq
consists of a sequence of congruent elementary arcs, each one
corresponding to a period interval of the function w($). The
number of these constituents is infinite in general, but finite
for a rational module m=n/w: the curve q 1is then closed.

Writing in such a case
(7.4) m = A/v (A,v positive integers without common factor),

we state: If the denominator v is odd, then the curve ¢ con-
sists 2)A congruent arcs and v-times encircles the center be-
fore closing; if v is even, the respective numbers are A and v/2.
Taking for w(¢) a finite trigonometric polynomial of the pat-
tern (6.8), it can be shown -- by means of the substitution
ei¢/v =1 and use of Buler’s formula (4.1) -- that the corres-
ponding curves q and g are algebraic and rational, i.e. of
genus 1.

The simplest examples are obtained with

(7.5) w(d) = ao<+ajejMi¢ (j even).

The auxiliary curve ¢ is then a trochoid, in particular a
cusped one, if lagl = |jm +1|. A solution belonging to the class
m=3/2 (w=120°) and j=-2 is illustrated in Fig.10. Choosing
for q° Steiner’s three-cusped hypocycloid |3, p.142], a mono-*
circulas quarticltohchingthe line at infinity at the circular
points I and J , the derived solution curve ¢ is a tricirular
sextic with three real cusps and an isolated double point at N.
There exist two possible inversions (bas circles j, and j,,

see Theorem 5) which map ~» onto a mirror copy q”.

The special case m =1 (w=180°) deserves special attention,
as it was mentioned already by J.L.KAVANAU |2, p.379|. Here
the automorphic rotation p is a half-turn, with other words
q has a center of symmetry, M . Due to formula (7.2) we have
p" =0, hence the mirror axis A = MN passes through the invers-

jon center 0 (which is the midpoint of the segment MN).
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Fig.10: Tricircular sextic, inverse to Steiner's hypocycloid
and inverted into a mirror copy '

KAVANAU’s statement that any inverse image g of an arbitrary
centric curve ¢  admits an inversion which maps it onto a mir-
ror copy ¢’ appears now as a corollary of Theorem 5. The Moebius
mapping u (5.4), described by zz" =a?, is involutory (a "Moebius
involution"). -- A simple example is to be seen in Fig.11 (and
also in |2, p.379]). It shows 'a bicircular quartic g, derived
from an ellipse ¢'; this example also belongs to the class (7.5),
where it is to be found with m=1, j=-2. Another example (m=4,

w=45%) is contained in Fig.26.

o



N / w=180°
ql \\ // m:,

\—’/

Fig.11: Bicircular quartic, inverse to an ellipse
and inverted into a mirror copy

\

Starting with a :entric Moebius spiral ¢ (like the curve 1
in Fig.9b) and inverting it from one of its two asymptotic
points, we obtain a logarithmic spiral q |3, p.221|. This leads
to the well-knon property of the logarithmic spiral that it
produces, if inverted from its center, concentric mirror copy.

Second _Subcase: |b"| >2a (R? <0, R purely imaginary)

The Gauss coordinates of the fixed points ¥ and N of the
Moebius mapping p (5.4) read, according with formulas (5.6):

(7.6) =z, = %(b" +8), z,= %(b" -S) with §2=p"2- 4a® >0,

Hence M and N are on thefy—axis and symmetrical to the mirror

axis h (y=b"/2); moreovar they correspond each other in the

inversion 1 (5.1), as z,3, =3 2z, =a®. These fixed points ¥ = A’

D8



and N =M’ may be constructed by intersecting the y-axis with
an anallagmatic circle o=o0’" (orthogonal to j) which is cent-
ered on h.

As the factor AN=2,/z, in equ. (5.13) is real, the direct
similarity u' reduces to a pure dilatation (w=0) from the
center ¥ ; it is characterized by the factor

(7.7) o = (b"-8)2/La?> 0.

To avoid the failure of formula (6.5), we replace w=0 by
w=2n. Thus we arrive, in analogy to (6.4) and with suppres-

sion of the superfluous factor ei¢, to the equation
(7.8) zZ = ep¢-w(¢) with 2mp = 1Inpand w(d +2m) = w(d)

which describes the auxiliary curve q . The corresponding
curve q is then obtained by means of the transformation (6.7),
where R = iS. Suitable periodic functions w(¢) are again to be
found in Section 6 for m=1/2.

The simplest choice, w(¢) =r°ei

0, determines a logarithmic
spiral ¢ and leads again to a Moebius spiral q.

To have an example for a periodic function w(d) given in
parametric form (6.12), let us take

(7.9) ¢=t--;-sin2t. w=1+%cost.

The so determined auxiliary curve ¢° is distinguished (due to
a special choice of the coefficients) by two series of cusps
distributed over two rays 1},1; (Fig.12a). Correspondingly,
the derived solution curve q shows two series of cusps on
two circles 1,,1, passing through the fixed points M and N
of u (Fig.12b).

Finally we state

Theorem 6: If an arbitrary curve q , admitting a dilatation
with the factor p from a center M , is inverted from an arbit-
rary center N#M ', the resulting curve q can be mapped onto a
mirror copy q° by suitable inversions, whose centers are all
collinear with M and N. These centers On divide the segment

MN corresponding to the ratio MOn:NOn =1 :p" (n integer).
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p=01: ¢=1,87%5

X=eP® V=§eP"cos t

=t-1sj
p=t 2sm2t

Fig.12a: Auxiliary curve admitting a group of dilatations
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Fig.12b:

Solution curve inverse to the auxiliary curve
of Fig.l12a and inverted into a mirror copy
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8., Limit Case

A case still open concerns the possibility of a vanishing
discriminant R?2 =0 in equs. (5.6). This possibility arises
with b = #2ia and thus belongs to the reflexional case b"=0
(Section 7). It is sufficient to consider only the supposition
b =2ia. Now we have coinciding fixed points M=N (z, =z, =ia)
at the contact point of the mirror axis h (y=a) with the in-
version circle j. The equation (5.9) of the Moebius mapping u

has the form
(8.1) cg” +ia(g" -¢) = 0.
The application of the inversion k (5.10), having its center

at N=M and (for simplicity) the radius c = a, leads to the
linear mapping v =KpK:

(8.2) g"" - ¢’ = ia.

We see that now p’ is a translation along the y-axis. As the

coordinate transformation (5.12) fails (the fixed point M
of u’ being at infinity), we simply put Z=¢ and write

(8.3) zZ" = z+ia.

The question for auxiliary curves ¢  which admit the trans-

lation n* (8.3) is answered to by
(8.4)  2(6) = 224+ w(s) with w(o+2n) =w(e).

The arbitrary periodic function w(d) is just the same as be-
fore and may be taken from Section 6 with m=1/2. The curve ¢’
determined in this way finally has to be transformed back by !
means of

a?
(8.5) z = = + ia,

Z
in order to obtain the corresponding solution curve gq.

Theorem 7: If an arbitrary periodic curve q , admitting
a translation of length a, is inverted from an arbitrary cen-
ter M, the resulting curve q is mapped onto a mirror copy q i
by.the inversion in a circle of radius a, passing through M [
and touching there the mirror axis which is perpendicular to
the translation lines. The radius a may be the primitive

period of q or any integer multiple of it.
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Fig.13 shows as an example a solution curve q derived from

a cycloid q . The corresponding auxiliary function is of the
form w($) = f +ge

id

Fig.13: Curve inverse to a cycloid and inverted
into a mirror copy

«
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I1II. DIRECTLY CONGRUENT-INVERSE CURVE_PAIRS

g. Preparation

Let q.be a plane curve which by a certain inversion 1 1is
mapped onto a directly congruent copy q”. When © denotes the
direct isometry which brings q” back to q, then p =01 is an
inditectly conformal Moebius transformation (Section 4) which
maps g onto jtself. Herewith the question for directly con-
gruent-inverse curve pairs q,q° is 1ed ' back to the determin-
ation of curves ¢ which are invariant under a given indirect
Moebius mapping MU. The difference to the similar situation in
Chapter Il consists in the circumstance that now u is indir-
ectly conformal and therefore does not necessarily possess
real fixed points.

Placing again the inversion center O at the origin of a

Gaussian plane, the inversion 1: P*P’ 1is described by
(9.1) 2’ = a2/5 with a=a>0

The transplacement G: P’> P" may be composed of a rotation about
the center 0 (angle o) and a translation. Under the admissible
assumption that the x-axis is parallel to the translation vec-
tor, the isometry O will be described by

(9.2) o7 = e1%° +b with b=520.

It should be noticed that the transplacement o can be per-
formed by means of a simple rotation about the fixed point H,
of o which is given with
(9.3) zf,=z;=—1——_-be—m * %('1+‘1cot%).
The special case o = 0 shows certain peculiarities, but must not
be rejected. For b #0 the jsometry o is a pure translation
along the x-axis (rotation pole H, at infinity); for b =0
o reduces to jdentity, so that this case (u= 1) leads to an-
allagmatic curves ¢ - g’ (Sections 3 and 12).

Combining equs. (9.1) and (9.2), we obtain for the Moebius

mapping Ol = U3 p+P" the répresentation
2 ia

Nltm
-+
o

or 2zz" -bz-a“e = 0.

(9-/&) z" = a



If there exists a real fixed point of the Moebius trans-
formation u (9.4), its Gauss coordinate z =2z" will satisfy
the conjugate pair of equations

(9.5) z3 - bz = azeiu, z3 - bz = aZe 1%,

Considering, for a moment, z and Z as independent quantities,
we find, with attention to

(9.6) b(z-%) = a’(eiu—e'ia) = 2ia?sina,

two possible value pairs:
z,,= (b? +2ia’sinat R)/2b

(9:1 ;' . (p? - 21a?sinatR)/26 "IN R? = (b?+ 2a%cos @) ®- ha®.
12 i

These'values satisfy the relations

-ie - - , i

(9.8) zl+22=21+z2=b.zlzz=—aze , z.z,=-a‘e

Apart from the exceptional case b =0 which will be treated
in Section 12 ("cyclic case"), further developments will es-
sentially depend on the sign of the (real) discriminant R2.
For R2>0 (R real), the value pairs 7,2, and z,,%, are pairs
of conjugate complex numbers, hence determine two real fixed
points M =M" and N =N" of the Moebius mapping u ("hyperbolic
case", Section 10). In the limit case R = 0 the fixed points
coincide in a real point M =N ("parabolic case", Section 11).
For RZ2 <0 (R purely imaginary), there exist no real fixed.
points of u; this "elliptic case" (Section 13) can be led
back to the cyclic case (b= 0) which also belongs to the cate-
gory R2 < 0.

10. Hyperbolic Case

We suppose R? >0, hence b> 2alsin(a/2)|. The values z,,z,
(9.7), determining the real fixed points M and N of the Moe-
bius mapping ¥ (9.4), have equal imaginary part. Hence M and
N lie on the line by =a’sina, parallel to the x-axis (Fig-14)
or coinciding with it if a= 0. The fixed points may be con-
structed by means of two auxiliary circles invariant under wu.

The first one, h,, is centered at the pole H, (9.3) and ortho-

gonal to the inversion circle j, ‘hence self-inverse (Property iv.

in Section 2); its invariance is evident, as o is a rotation
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about H, . The second circle, h,, has its center H, at the point
with the coordinates x =b/2, y=- x tan(a/2) and meets j at op-
posite points; due to Property v its invariance is easily
checked.éThe circles h, and h, intersect each other in the

required fixed points M and N (Fig.14).

a=2,a=60°
b=3,c=2

Fig.l4: Indirect Moebius mapping, composed of an inversion
and a transplacement (hyperbolic case)

Introducing -- like in Section 5, equ. (5.8) -- new coor-
dinates with
(10.1) g =z-2, (g% =2"-2,),
the equation (9.4) of the Moebius mapping u takes, due to (9.8),
the form
(+0.2) -  Eg" -, EHet =0,
The new coordinates of the fixed points M and N are now Ty =

= z,-2z, = R/b and g, = 0, respectively.
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In a next step we apply an inversion K: p>p  (p">P"") from

the center N and with an arbitrary radius c:

(10.3) ¢ =2/t (" = /L")

Herewith u is transformed into a linear mapping Kupx =u‘:P? » po

described by
(10.4) zza’;‘-zlg'wc? = 0.

This is an indirect similarity, whose finite fixed point M~
is given by ) =¢c?/(%, -%,) =bc?/R; N is at infinity (z,= ®).
Anew translating the coordinate system by means of

(10.5) z=2¢ -t (z* = ¢ -t 4

we attain the canonical form

(10.6] 2,2-2,2" = 0 or 2z°=A-Z with A=z,/z, =pea .
Corresponding to this expression the similarity p~ is com-

posed of a reflexion in the X-axis, a rotation about the

fixed point M (angle w) and a dilatation (factor p) from the

center M . The rotational component may be eliminated by re-

placing the mirror axis ¥ =0 by another one which makes with

it the angle w/2 (Fig.14). Hence u* may be denoted as a "di-

lative reflexion" F2, p.198|. With respect to A= zz/z1 we have

Lemma 2: The linear mapping u' in the hyperbolic case 13
an indirect similarity with the fixed point M . It is composed
of a dilatation from M with the factor p=O0N:0M, and a re-
flexion in an axis passing through M~ and forming with the

line MN the angle w/2, where w = ~MON.

Consulting Fig.14 we see that the mentioned mirror axis is
the k-image h, of the second auxiliary circle h,. The first
circle, h,, is mapped by the inversion k onto another line h,,
perpendicular to Hﬁ and also invariant under the dilative re-
flexion p . Consequently, the orthogonal circle pair h yh, is
invariant under u, a property already used in constructing the
fixed points M and N. -- The effect of an indirect Moebius
mapping u is jllustrated in Fig.15; for simplicity, the fixed

points have been placed at +i and -i.

T




Fig.l15: Invariant circle pencils of an indirect
Moebius mapping with two real fixed points

For analytical purposes it will be convenient to have form-
ulas for the characteristic constants p and w. From l\=zz/z1
we find with attention to relations (9.8):

(10.7) o= |Al = a’le, B, = 2222/62r
Putting argz, = B, we have argz2=n—f1—8, hence

w=arg A = argzz—argzl=ﬂ-,u-28 (mod 2m)

(10.8) with sin8=alsina/b|zl| = (a/b)/p sina.

The possibility o -1 can be excluded, as then u’ would be a
pure reflexion, hence p a pure inversion (Property vii in Sec-
tion 2). This case, characterized by a=b = 0, leads only to

anallagmatic curves gq = g’ (Section 3).
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In order to find curves q¢" which are invariant under the
similarity v (10.6). we look for functions z(¢) with the pro-
perty

(10.9) 27(s) = pei®2(8) = z(¢tw).

Expressing such a function in the form

(10.10)  z(8) = oPPe10/2 (4) with P =0,

the relation (10.9) holds, if the auxiliary function w(¢) satis-
fies the condition

(10.11) wio+w) = (o).

This yields for the real and imaginary parts of w = u +iv the

functional equations

T (10.12)  u(dtw) = u(d), vid+tw) = -v(d).

Both of these arbitrary functions are periodic: u($) has the
period w, v($) the period 2w. In principle the values of both
of these (real) functions might be arbitrarily prescribed in
the interval 0< ¢ <w, with attention to the continuity restric-
tions u(w) =u(0) and v(w) = -v(0). It may be remarked that w=0
cannot occur, as this would suppose the excluded value p =%y
Having now chosen a suitable function w(é) =u(d) +iv(d),
the corresponding curve g (10.10) has to be transformed back
in recurring equs. (10.5), (10.3) and (10.1). The resulting

curve q is represented by
2

PRI /e
Z(0) + Ty
where R and z, are to be taken from equ. (9.7). The curve ¢

(10.13)  z(9) = + z, with ¢} = bc?/R,

represents a solution of our problem: Transformed by means of
the inversion 1 (9.1), q will produce a congruent copy q .

The auxiliary curve ¢’ (10.10) shows, due to its automor-
phic similarity n , a certain periodic structure: It consists
of an infinite series of similar elemembary arcs. This circum-
stance induces a corresponding structure of the solution curve
q (Fig.16).

Asking for closed analytical function pairs u(d), v(o)

we may, after introduction of the module m = n/w, use the fol-

T




lowing trigonometrical polynomials or convergent series:

(10.14)

ule) = 1 (a],cOs jmb + bjsin jmd)

v(e) = 1 (a’.cos jm¢+bjsinjmd>)

with arbi}rary real coefficients a_,b . Fig.16 shows a simple

example,

(10.15)

9:9"”:
a=-33,32°

w=60°(m=

derived from a function of the kind

w(d) = a, +ib,sinmd.

Y
3,j=1)

1,418

Fig.l6: Curve inverted into a directly

congruent copy (hyperbolic type)
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The corresponding auxiliary curve q  is known as orthogonal
projection of a cylindro-conical loxodrome.
The most general solutions would be obtained by simultaneous
parametrization of the functions u(¢) and v(®) in the manner
of equs. (6.12).
: Starting with an arbitrary suitable curve g’ and going back
through the preceding developmemts, we state

Theorem 8: If an arbitrary periodic curve q , admitting a
dilative reflexion (center M', factor p, axis h;). is inverted
from an arbitrary center N#M' , the resulting curve q can be
mapped onto a directly congruent copy q” by means of a suit-
able inversion. The center 0 of such an inversion is determ-
ined by the relations OM:ON = 1:p and '+ MON = w, where M denotes
the image of M and w/2 is the angle which the axis h, makes
with the line MN. Since the factor p may be replaced by any
odd power pn, all of the possible inversion centers lie on a

circle passing through M and N.

11. Parabolic Case

In the 1limit case of a vanishing discriminaht we have R=0
and, still postponing the "cyclic case" b= 0 (Section 12),
p>0. From equs. (9.7) we take

(11.1) p = 2asin(a/2) with a? 0,
and

(11.2) z, =2, = a(sin% + icos%) = ia

e-ia/z.

Hence the fixed points of the Moebius mapping U (9.4) coincide

in a single (real) point ¥ =N, situated on the inversion circle.

Both of the invariant circle pencils are now parabolic. '
After performing the steps (10.1) and (10.3) we arrive at

the linear mapping b = KUK:

(11.3) zl(Z -l;”‘) $ e? = 0.
Putting, for simplicity, c=a and
(11.4) ¢ = z-%8cos% ,

we obtain the canonical form
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(11.5) z" = Z + s with s=a sin% =4% s

which shows that u® is an opposite jsometry. From its cartesian

representation
(11.6) % x" = Xts, y" = -v

we see that this glide-reflexion |2, p.193| is composed of a
reflexion in the X-axis and a translation of length s =b/2

along that axis. In other words we have

Lemma 3: The linear mapping W’ in the parabolic case is a
glide-reflexion parallel to the x-axis which brings the inver-

sion center O to the fixed point M =N.

In order to f£ind appropriate auxiliary curves g’ which admit
the glide-reflexion u’, we suppose for their representing func-
tion z(¢) the relation

(11.7) 27(8) = Z(0) +s = z(d+m).
Putting
(11.8) (o) = 221 wle),

the relation (11.7) requires the condition
(11.9) w(o+m) = #(e).

With respect to the similar condition (10.11), suitable
functions w(d) = u(¢) + iv(e) are given by formulas (10.14)
with m=1, or corresponding parametric representations. Any
periodic curve q determined in this way has then to be trans-

formed back by means of

2a? . -ia/2 *

:-——-——""‘8_‘___—_-
(11.10) z(9) 27() + ja cos(a/2)

Starting with an arbitrarily given suitable curve q Wwe have

Theorem 9: Let g be an arbitrary periodic curve admitting
a glide—reflexion uw with the translation vector S, and 0,M an
arbitrary pair of corresponding points of W . Then the inversion
in the circle with the center M and passing through 0 trans-
forms ¢ into a curve g with the following property: Its in=
verse image q” with respect to the circle centered at 0 and

passing through M is directly congruent to g3 q and q’ are
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related to each other by a rotation about M. Since the primitive
vector s may be replaced by any odd multiple ns, there exist an
infinity of possible inversion centers 0 for the same curve qj

they all lie on a circle passing through M.

Fig.1% shows an example based on the auxiliary curve g with

the parametric representation
(11.11) X=Q—sﬁ(2t-sin2t), Y=§sﬁ(cos3t—cost).

Since (more or less by chance) this curve possesses a center
of symmetry at the midpoint S’ of the segment MO, the derived
solution curve ¢ also offers an illustration for the case w=1
in Theorem 5: Hence the inverse image q° of q is not only di-
rectly congruent to g, but also a mirror copy of g. Moreover,
due to the infinite set of mirror axes of q , the solution

curve g is anallagmatic in infinitely many ways (Theorem 1).

12, Cyclic Case

Before entering into the investigation of the general ellip-
tic case R2 <0, it is recommendable to clear the situation in
the postponed special case b =0, denoted as "cyclic case" (Sec-
tion 9). Here we have p? = -4a"sin?a, hence also R? <0, if we
exclude a =0 (mod w). Keeping in mind that the rotation angle
. of the isometry o (9.2) -- which now is a pure rotation about
the inversion center O -- is determined only up to even mul-
tiples of m, the provisorily made restriction will prove to
be of no importance.

Thus we have to do with Moebius mappings U =01 =10, des-
cribed by
(12.1) 52" = a%el®.

Obviously such a transformation has no real fixed points, if

o # 0. Consequently there is no occasion to perform the oper-
ations used until now. Nevertheless we will find by individual
reasoning solution curves invariant under p. Such a curve gq = q",
admitting with p also the rotation u? =02 (angle 2a) will show
a cyclic periodicity. Therefore we may suppose for its repres-

emtation z = z(¢) either

e



(12.2) 2"(0) = z(6+a+2kn), k integer,
or
(12.3) 2"(6) = 2(6+B) with B=a+ (2k+1)m

Since a may be augmented or diminished by any integer multple
of 2w, it is sufficient to consider only the case k = 0. Not-
withstanding we have to distinguish between two types of sol-

utions.

Inserting the relation (12.2) into equ. (12.1), we obtain

(12.4) 203} -5(s + ) = ate?®.

This multiplicative functional equation ¢an be transformed into
an additive one by passing to logarithms or, better, by means
of the substitution

(12.5) z(9) = aei¢-%—§%%%; s

For the so introduced auxiliary function w(¢) we find the con-
dition

(12.6) w(d+a) +w(d) = 0.

It requires for the real and imaginary parts of w(d) =u(¢) +iv(e)

the relations
(12.7)  u(é+a) = -u(e), vio +a) = v(o),

similar to equs. (10.12). Both of the real functions are peri-
odic, u($) with period 2a, v(#) with period a. Using the mod-
ule m = n/a, simple analytic solutions are offered with
s uld) = Y (aj cos jmd + b, sin jmd),

vie) = (aj cosjm¢+bj sin jmd)
with arbitrary real coefficients ayr b .. It should be noted
that we cannot do without a real part u(¢), since with u(¢) =0
the fraction in formula (12.5) would have the absolute value 1,
hence the solution curve g would reduce to the inversion circle
j or a part of it. On the other hand, with vanishing imaginary
part v(4) =0 the solution curve g will be simply described by

e e




its polar equation

(12.9) ro= a%—t%((%

The most general solutions of Type A can be obtained by
parametrizing the variables ¢, u and v in a manner which was

indicated with equs. (6.12).

The alternative (12.3) leads over (12.1) to the functional

equation
(12.10)  2(8)-z(+8) = —a2 B with B = a+ 7.

It seems impossible to transform this multiplicative equation

into an additive one, but it may be normed by putting
(12.11) z(6) = aet®wie)

which leads to the simpler condition

(12.12) w(e) w(o+B) = -1.

Since the auxiliary function w(¢) is periodic (period 2B), we

write it as quotient of two periodic functions,
(12.13) w(e) = P(d)/0(s),
and try to determine these functions in such a way that
(12.14)  p(o+8) = -0(8), o(e+8) = P(o).
These relations yield |
(12.15)  P(s+28) = -P(8), Q( +28) = -0(e).
Hence both of the functions have the period 48, and simple ana-
lytic solutions are given, with use of the module n = 7/B, by
p(o) = alcos%§ +ascos-‘3%g +a5cos§,—'2'i +oaee

+b!sin%§ +bssin2£2i +b5siné%i * ouei
o(e) = 8,aan 8k -2, sin 28t +a,sin208 - ..
-Elcosﬂg +53c032%& —Escoséﬂzi ¥ s wig

(12.16)

where a., and b are arbitrary complex coefficients. If all co-

efficients are real, w(¢) is a real function, and the solution
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curve q is simply described by its polar equation
((12.17) r = aw(é).

The two types of solutions are not convertible into each
other, since the attempt of a substitution w=(1+w)/(1 - w)
does not yield condition (12.6). Thus we state

Theorem 10: Plane curves ( which coincide with their in-
verse image q’ after a rotation through an angle o about the
inversion center are representable by equs. €12.5) or (12.11);
where the respective arbitrary periodic functions w(6) or w(d)

satisfy the corresponding conditions (12.6) or €12.12).

Since each solution curve ¢ = g" admits the rotation n? =02

(angle 2a), it consists of a sequence of congruent arcs. In
case of a rational module m=n/a the curve g (supposed as con-
tinuous) is closed. Writing in such a case lm|= x/v (A,v posi-
tive integers without common factor), we state that q consists
of A congruent arcs and v-times surrounds the center before
closing, if A\ is even. Then Vv is odd, and the automorphism v =
= (0‘)A: o) is a rotation through the angle Aa=:m, thus equi-
valent to a half-turn: such a curve ¢ has a center of symmetry
(Figs.19.20). __ Otherwise, if X is odd, the auntomorphism ux=
- oM is a mapping composed of the jnversion 1 and a rotation
through the angle vm. For v even, the rotation is equivalent
to identity, hence the curve q is anallagmatic (Section 3,
Fig.21). For v odd, the rotation is equivalent to a half-turn
and the curve g is anti-anallagmatic, i.e. related with its
inverse image q” by the centric symmetry with respect to the
inversion center (Fig,22).

Those solution curves g which are obtained by means of tri-
gonometric polynomials (12.8) or (12.16) with rational module

m=\/v or n= A/(A+v) are algebraic and rational (of genus 0).

" For Type A this is to show by introducing the new parameter

- o1®/V (occasionally t = e21¢/v) which also allows to deter-
mine the order of q. Analogous substitutions are suitable for

Type B.
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With m=1/2 (a=2m) we obtain only

anallagmatic curves. The

choice w=a,cos($/2), for instance, leads to a self-inverse

sextic of Type A. The symmetric strophoid (3.1) belongs to

* Type B and would be found (after change of sign at m) with

w=cot(d/2).

The category m=1 (a =m) throughout consists of anti-anal-

Jagmatic curves. They might be considered as self-inverse with

respect to the imaginary circle x2 +y”

= -52. With w=g€cos b,

for instance, we obtain a curve g of Type A with the polar

equation

(12.18) r=a1+ecosg= 2a

1-€cosd T-¢cos o

m=1
(o =180°)

7 \
/" Parabola—"~

Fig.18: Anti-anallagmatic quartic
(focal conchoid of a parabola,
cyclic type A)

that most of the few known examples of

a.

Since the first term in
the last expression re-
presents a conic with

the numerical eccentri-
city € and with one focus
at the origin, we see
that q (a monocircular

quartic) is a focal con-

choid of a conic |3,p.106]..

Fig.18 shows the partic-
ular specimen derived
from a parabola (e=1)3
its equation may be

written in the forms

(12.49) r - a-cot2(0/2)
or
(x24y?) (y? - hax) = aty®.

With m=2 (a=m/2) the
resulting (centric) cur-
ves g coincide with their
inverse image q” after a
quarter-turn. It seems

non-trivial congruent-

inverse curve pairs belong to this class [ﬂ]. A simple re-
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presentant of Type B is generated by w=cot ¢; its equations

read

(12.20) r = arcot ¢ or (x2+y2)y? = a?x?.

This monocircular quartic witha tacnode at the center (Fig.19)
is known under the name of "kappa-curve" 13, p-Ths i p-1231.
Due to its centric symmetry, this curve g is also a mirror

copy of its inverse image q” .

Fig.19: Kappa-curve inverted into a
congruent copy (cyclic type B)

A less simple example of Type A is shown in Fig.20. It is

derived from a function
(12.21) w = a,cos 20+ b,sin 60

and is centric, but without axial symmetrys; its order is 14.
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cos 2y + é sin 6¢ N

Lt
i

Fig.20: Directly congruent-inverse curve pair
(cyclic type A)
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The solution curve of Fig.21 belongs to Type A with the
nodule m = 5/2 (a=2v/5= 72°). It is determined by w = a,cos(56/2),

anallagmatic and of order 14.

m=5/2
(=72

Fig.21: Anallagmatic curve of order 14
(cyclic type A)

The last example, shown in Fig.22, belongs to Type A with
the module m =3 (a=n/3= 60°) and is obtained with a function
(12.22) w = iag +aycos 3¢.

The curve q is anti-anallagmatic and of order 14. -- A curve g
of Type A (12.5) has cusps (like that in Fig.22), if for a
certain real value of the parameter ¢ the derivative 2z =dz/dé
vanishes. This requires for the auxiliary function w(d) the

condition

(12.23) w2+ 2iw = 1,

kR



hence for its components u, v the relations
(12.24) u2-v2-2v = 1, uv H = 0.
In the present case (12.22) these conditions read

(12.25)  alcos?36-aj = 1, a, = 3tan 36.

They have been satisfied for o =15°, say, with a, =3, a,

Fig.22: i
ig.22: Anti-anallagmatic curve of order 14

(cyclic type A)

By

=2/5.



13. Elliptic Case

For the discussion of the general elliptic case R2 <0 we put
R=iS (540, real). With exclusion of the cyclic case b=0
(Section 12) we obtain from equs. (9.7):

£,, % |b? + i(2a%sina *S)|/2b,
(13.1)  5,, = |p2-1(2:*sina .s)1/2b

with S2 = 4a" - (b2 + 2a2cos a)?.

As now neither z,,z, nor z,+,2, are conjugate value pairs, the
(indirect) Moebius mapping u (9.4) has no real fixed points.

|By the way, the fixed points are imaginary and have the (com-
plex) cartesian coordinates x“:=—’12~(z,2 +E1,) ylz=%(212 % i )b
Denoting now in this section with M and N those real points
which are determined by the Gauss coordinates z, and z,, re-
spectively, let us forget the second line of equs. {13.1).

From now on the symbols 2,,%, shall mean (as usually) the con-

jugates of z,,2,, i.e.

(13.2) Bin = |b2—i(2azsinats)|/2b.

After this agreement the following relations hold:

(13.3) 2,45, = 2,45, = by 212, " ate1®, z 5, - -a%e" ",
furthermore
(13.4) 3.z, -bZ -azeia = 0, .Z,z,-bZ, -a2e™?.

- i 1

With respect to the equation (9.4) of the Moebius mapping uP >p”

we have

Lemma 4: The points M(zl) and N(zz) are corresponding to
each other in the indirect Moebius mapping W (M" =N, N" = M).
They are the fixed points of the direct Moebius mapping 2.

This commutative point pair M,N of pn may be constructed in
the following way (Fig.23). Due to the common real part b/2
of z, and z, we know the connecting line 1 =MN (x =b/2); the

p-image 1" of 1, a circle easy to find, jintersects 1 at M and N.



Fig.23: Indirect Moebius mapping, composed of an inversion
and a transplacement (elliptic case)

Using relations (13.3) the equation (9.4

mapping U may be written as
€13.5) 52" - (z,42,)2 + 2,2, = 0.

Although M and N are not the fixed points o
form the same operations as before. At firs

coordinates
(13.6) c=2z-2z, (¢"=2" -2z,),

thus translating the origin to N (Fig.23).
of p obtains the form

(13.7) e -, (E-g") 43,20 with g, ==

0TS

) of the Moebius

f nu, we will per-

t we pass to new

hereby the equation

, -z, =1S/b.



Now we apply an auxiliary inversion k¥ (center N, radius c), de-
fined by

(13.8) g = e (g™ = /7).
Replacing the result by its conjugate (which means the same),
we obtain
(13.9) Clzzi‘c" + czzz(i' -g") + ¢* = 0.

In contrast to the preceding cases, this transformed mapping
p' =kpk is not linear, but still a Moebius transformation.
It interchanges the k-image M’ of M with the x-image N of N
which is at infinity, hence M® is the pole of u‘ (Section 4).
Using this pole as origin for new coordinates

(13.10) g« g (2% =g -5)
with ¢} = c?/T, = ibc?/S,
the linear terms in equ. (13.9) will vanish. With attention to
Re | = 0 and 7,C) = -c? we obtain
(13.11) lezzz' + c"zl/cl = 1@,

and finally the canonical form of u’:

bzc"'gi L a2.iw
—s-r-zz—Ae P

Herewith the problem of the general elliptic case is led

(13.12) zz" =

back to the cyclic case (Section 12), since equs. (13.12) and
(12.1) are of the same type: u® is a "cyclic" Moebius mapping,
composed of an inversion from the pole M’ (radius 4) and a
rotation about M (angle w). The polar net about the pole M ,
as a whole invariant under u’, corresponds (by means of the
inversion k) to an orthogonal system of circle pencils invari-
ant under u: the elliptic pencil of the circles passing through
M and N (without a fixed element), and the orthogonal hyper-
bolic pencil (containing one invariant circle, the k-image of
the inversion circle 2% =A2 of u ). These facts provide a good
insight into the effect of an jndirect Moebius transformation
without real fixed points; see Fig.24, where the commutative
point pair M,N has been located at the points *i of a Gauss

plane.
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Fig.24: Invariant circle pencils of an indirect
Moebius mapping without real fixed points

Before entering into details we roughly state

Theorem 11: Each one of the components of a directly con-
gruent-inverse curve pair q,q° of elliptic type is inverse to
a curve q which belongs to a directly congruentinverse pair

of the cyclic type.

To obtain a solution of the general elliptic problem, i.e.
a curve q which is invariant under the Moebius mapping v (9.4),
we have to start with a solution of the cyclic problem, i.e.
with a curve q invariant under u (13.12). The equation Z = Z(¢)



of q  is then to be transformed back by means of

(13.13)  =z(4) = + z, with g, = ibc?/s,

PR <k
z(8) + T, 2
where S and z, are to be taken from equ. (13.1). Corresponding
to the types A and B of the auxiliary curves ¢' (Section 12)
we may distinguish between the same types at the solution cur-
ves q.

1t is worth to récall that the isometry o (9.2) which re-
iates the solution éurve g with its inverse image q° may be
performed by means of a pure rotation through . the angle o
about the center H, (9.3), which now is at the inside of the
inversion circle j (Fig.23).

To add some more details, in particular formulas for the
essential constants 4 and w of the cyclic Moebius mapping u',
we deduce from equs. (13.12) with attention to relations (13.3):

bz u bz 4 N
(13.14) A? = -ig—.l%\;l = Z57in,E,.

The so determined circle with the center M’ and the radius 4
is invariant under p'; Hhence it is the k-image of a circle
invariant under u. The latter was already mentioned as a fixed
element of the invariant hyperbolic circle pencil and may be
found as follows (Fig.23): Its center H, is on the line 1 =MN
and has the coordinates x=b/2, y=-x tan(a/2); the circle
itself, h,, meets the inversion circle j at opposite points
(compare the same construction in the hyperbolic case, Fig.14).
As to the rotation angle w of u", we learn from equ. (13.12):

(13.15) o = arg(z,/z,) =argz, -argz, = NOM.
In words (Fig.23) we have

Lemma 5: The rotation angle of the cyclic Moebius mapping
u* (13.12) is equal with the angle under which the commutative
point pair M,N of the elliptic Moebius mapping | (9.4) is seen

from the inversion center O.
Instead of the relation (13.15) we may write
(13.16) w = argz, targz, =arg(z,z,),

and as with respect to equ. (13.3) |z122|= lz,z,| =a%,

o B



we have
(13.17) z,Z, - a?el® = a2(coswtisinw).
Taking from relation (13.4)

(13.18) * 2,2, = bzy +a?e” % = 1(b? + 2a%cos a + i5).

and comparing this expression with (13.17), we obtain the

formulas
b? + 2a’cos ’
(13.19) cosw = ————qu———il , sinw = 5%7 "

Looking for algebraic solutions we have only to prescribe
a suitable value of w, i.e. a rational module m = T/w. Such a
choice of w=nw/m implies, due to the first formula (13.19),

a single condition for the quantities a,b and «, namely
(13.20) 2a2(cosw - cosa) = b? with cosa<cosw.

In the example of Fig.25, based on m=2 (w=m/2), this con-
dition is satisfied with a= 2n/3 and a=b, for instance.
Choosing as auxiliary curve gq the kappa-curve defined by its
polar equation (12.20) with A instead of a, we obtain a tricirc-
ular sextic q with two tacnodes ("bretzel curve") .

Another algebraic example, belonging to the module m =4
(w=mn/4=45") and shown in Fig.26, is constructed with a=31/4=

135° and b2 = 2/2 a? . The auxiliary curve q . defined with

(13.21) v = Ysin(4 +60°)
5

in equ. (12.5) (where 4.2 replace a,z), is a four-lobed cyclic
curve of order 10. The corresponding elliptic solution curve g
has the order 18.

Summarizing the main facts we state -

Theorem 12: Let q° be an arbitrary solution curve of the
cyclic problem, i.e. admitting an inversion of radius A from
its center M~ followed by a rotation about M with an angle Ww.
If q 1is transformed by an inversion K with arbitrary center
N#M and radius c, the resulting curve ¢ admits certain in-
versions which map it onto a directly congruent copy q’. The
center 0 of such an inversion is determined by the relations

OM:ON = MN2A%/c" and NOM = w or an integer multiple nw, where
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M denotes the kK-image of M . All possible inversion centers O

are situated on a well-defined Apollonian circle.

The last part of the theorem follows from equ. (13.14) with
respect to |zl| =O0M, Izzl =ON and S/b = Izl 'Zz‘ =MN.

a=b=1, a=120° |y
w=90° (m=2) MIN"____ 9"
c=1 \ § e, -

A =0,966 P g,

Fig.25: Cl:rcular sextic (bretzel-curve) inverted into a
directly coneruent copy (elliptic type B)

iy 7 e



G=’, o= 135°
b=%8=1682
w=45° (m=4)
c=1,A=%2

.....

Fig.26: Curve of order 18 inverted into a
directly congruent copy (elliptic type A)



IV. COMPLEMENTS

14, Stereoqraphic Projection

Stereographic projection is a classic mapping of the sur-
face of a sphere @ onto a plane M. It was known already to the
ancient Greeks (HIPPARCHOS, 150 B.C.) and consists in a cent-
ral projection from a surface point U  of @ onto a plane I
which is perpendicular to the radius ending at U,. Since this
mapping is conformal and circle-preserving {2, p.390l, it is
important in geography and astronomy, but also in crystallo-
graphy, complex function theory (Riemann’s sphere as an alter-
native to the Gauss plane), and of course in circle geometry.
Here we intend to show its use for deriving directly congruent-
inverse curve pairs in the cyclic case (Section 12).

In cylindrical coordinates r ,,,z, the sphere Q may be

given by

(14.1) r2+z2 = a? (4, arbitrary).

Uo
\
\ \\\\ Po
AK "R

\\!:rN ~_ P
-—r ’-CR }

A r

\

BY)

Fig.27: Stereographic projection of a sphere
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Taking as center of projection the "north pole" Uo(r0= o,
zy=a >0) and as picture plane the equator plane I (z=0), a
surface point Po(ro.¢o.ze) #U, is mapped onto that point P of T
(Fig.27). which is determined by the polar coordinates

. _HBEe . o ate ¥
(14.2) oo Rl ;ﬁr;ﬁ y b= 0.

Inversion of the sign of zo-induces the reflexion Po > Py of
the sphere in the equator plane, and in the latter a trans-

formation P+ P’ described by r’ =a?/r, hence

Lemma 6: The reflexion of the sphere Q in the equator plane
N appears in stereographic projection as the inversion with

respect to the equator circle j.

Transplacing the points Py and P’ by means of a half-turn
about the z,-axis to Py and P" (Fig.27) we obtain

Lemma 7: The reflexion of the sphere Q in its center 0
appears in stereographic projection as the anti-inversion

with respect to the equator circle j.

These facts allow a simple construction of anallagmatic or
anti-anallagmatic curves. In the first case we take an arbit-
rary cylinder T perpendicular to I and determine its inter-
section curve g, with the sphere Q: The stereographic projec-
tion of g, is an anallagmatic curve q. provided that the
spherical curve g, does not split into two separate parts
(which may occur). If, for instance, the base of the cylinder
I is a conic, then g, is 2 spherical quartic, and its stereo-
graphic projection ¢ is either a bicircular quartic or a circ-
ular cubic; the latter possibility arises, if I' passes through
the projection center U,. In the second case we take an arb-
itrary cone A issuing from the center 0 of @, and determine
its intersection g, with Q: The stereographic projection of g,
is an anti-anallagmatic curve ¢, provided g, does not split.
If, for instance, A is a quadratic cone, then g, is a spher-
jcal quartic, and its stereographic projection ¢ is again a

bicircular quartic or a circular cubic (in general of genus 1)



Now let us proceed to directly congruent-inverse curve
pairs q,q° of the cyclic type (Section 12). The basic indirect
Moebius mapping u =0t (12.1), composed of the inversion 1 and
a rotation o with angle a about the inversion center 0, is the
stereographic image of an opposite isometry ', =0,1, On the
sphere Q; this automorphism of Q@ is composed of the reflexion

1. in the equator plane Tl and the rotation o, =0 (about the

0
zo—axis). A curve ¢ in Nl invariant under p is the stereograph-
jcal image of a spherical curve g, which is invariant under v .
Such a curve consists of a sequence of congruent arcs; contin-
uity supposed, it will intersect the equator circle j in a
series of points with angular distance a. We might arbitrarily
prescribe one of the mentioned elementary arcs beginning and
ending on j, and then repeat it by applying the isometry u,.
Analytically, the spherical curve gq, may be defined by a

(real) function
(14.3) 2o = 2o(0) with 2z, (6 +a) =-z,(6).

Using the module m=m/a suitable functions are offered with
trigonometrical polynomials of the kind indicated for uld)

in the first equation (12.8), or by appropriate parametric

representations ¢(t) and z,(t). The polar equation r =r(o)

of ¢ is then determined by

2 - ,2,atzy(¢
(14.4) r2 = a ;_—z:{-ﬁ- ;

The spherical curve q, lies on a ruled surface ® defined by

equ. (14.3); & consists throughout of normals of the z,-axis

and therefore is, in the language of line geometry, a "conoid".
The simplest example is obtained with m=2 (a=mn/2) and

(14.5) s = eacos20 (e>0).

In this case ® is Pluecker’s cubic conoid, known as "cylind-
roid". Its intersection with the sphere Q is a sextic ¢, with
double points at the north pole U, and the south pole V, . Con-
sequently the stereographic image g of gq, is a monocircular
quartic with a double point at the center 0 =V. Its equation

in polar coordinates is given by

w 60 =




(14.6) 2, g2ltecosze

£ 1-: cos 20
The cartesian equation, obtained by elimination of r and ¢
from x=r cosd, y=rsind and (14.6), reads

(14.7)  (x2+y?)(Bx? + 4y?) - a2(Ax? + By?) with A = 1+e, B=1-c.

The donble point 0 of g is a real node for € 1 and isolated
for ¢ 1 (Fig.28); the curve is an oval, if e<v/5-2 = 0,236.
As for € #1 there are no other singularities than the double
point 0, the quartic q is of genus 2. In the limit case =1
we meet again the (rational) kappa-curve r =a cot ¢ (with a tac-
node at 0 and a node at the point at infinity of the x-axis,

Fig.19).

m=2(@=90° Y o
e=1/2 g ~y
/// \\
C"u p
\ X~ 4:’ >
W
‘ %ﬂ

/. X /
=q"

/
\ //q’

N /

G, R B

B"

V>

Fig.28: (.,‘ircular quartic inverted
into a congruent copy
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The quartic ¢ in Fig.28 reminds of a Cassinian curve (as

mentioned in the invitation for the competition), but is not at

all identical with it, as it is not bicircular. In order to
obtain a Cassini curve we replace the conoid @ (14.5) by a

hyperbolic paraboloid, equally invariant under u :

(14.8) cz, = x: -y§ = r§cos 26 (c>0).

It intersects the sphere Q in a quartic q,, sometimes denoted
as "tennis-ball curve" (Fig.29). The stereographic projection
q of q, is abicircular quartic. To deduce its polar equation

we need the inverted formulas (14.2); 1ee.

a’r r®-a?
(14.9) o = 2¥YT ) By % GTYTLY ¢

Inserting these expressions in equ. (14.8), we find
(14.10) r* - 2p2r? cos2¢ -a* = 0 with b2 =2a/c.
The cartesian equation of ¢ reads
(14.11)  (x24x2)? - 2b%(x2-y?) = a"
and testifies that q is indeed a Cassini curve. This quartic,
having only two double points at the absolute circular points
7 and J (Section 2), is of genus 1. It is an oval, if a* 2 3"
hence c¢? > 12a?.

Similar procedures may be performed for any even module m.
In cases of odd modules it is preferable to use, instead of
a conoid ®, a cone A having its vertex at the center 0 of

the sphere Q. It may be given in the form
(14.12)  zo/ry = u(®) with u(d+ a) = -u(d), a=mn/m.

This cone A intersects the sphere © in a curve q,. whose ste-

reographic image ¢ is described by the polar equation
(14.13) r?-2ar-u(¢) -a* = 0.

The simplest example, obtained with m = 3 (a=n/3=60°) and
(14.14) u($) = ecos 36 (e>0),

operates with a cubic cone 4 containing the z -axis as (iso-

lated) double line. Its spherical intersection g, is a sextic
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Fig.29: Cassinian quartic as stereographic image
of a spherical quartic (tennis-ball curve),
and inverted into a congruent copy
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with double points at the poles U  and V of Q. Hence the ste-
reographic image q of q,, described by

(14.15) r2-2cacos3p-a2 =0

and shown in Fig.30, is a monocircular quartic with an isolated

double point at the center 0. Its cartesian equation reads
(14.16) (x2+y2)(x2+y2-az) = 2eax(x? -3y2).

As the quartic ¢ has no other singularities than the double
point 0 (the circular points I,J being only contact points
with the line at infinity), the curve is of genus 2.

y m=3 (e=60°

Fig,30: Monocircular quartic
inverted into a congruent copy
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Additional remarkable examples are derivable from spherical
helices q,, i.e. curves of constant slope tanB on the sphere Q.
Such a curve may be kinematically generated as the path of a
point of 'a plane which is rolling on a fixed cone of revolution
with the:aperture angle 2B. Due to the invariance of the dis-
tance a > 0 between the cone vertex O and the generating point
P, #0, the path q, of P, is traced on a sphere Q with the cen-
ter 0 and the radius a, and since at each instant the path tan-
gent is perpendicular to the rolling plane, all tangents of q,
have indeed the same inclination B against a base plane NI ortho-
gonal to the axis of the cone. Considering merely the elements
on the surface of the sphere Q2 we have a great circle g, con-
tained in the moving plane and rolling on a pair of congruent
small circles p,.p, belonging to the fixed cone. Hence the
spherical helix q,, being an orthogonal trajectory of the posi-
tion system of the great circle g,, may be interpreted as a
$pherical involuté of the circ;é pair py,-P,-

Evidently the spherical helix g, is periodic and admits a
rotation through the angle 2n/sinB - 2m =20 about the axis of
the fixed cone. It consists of a sequence of congruent elemen-
tary arcs, joined with each other in cusps which are distributed
alternatively over the circles py,p, (Fig.31). Led by the kina-
matical generation of the helix ¢, and identifying the axis of
the fixed cone with the z,-axis, it is not difficult (see [4])
to deduce the following parametrical representation of gq,: ‘
(14.17)  FotiVe T ?GaTTY'(&nH)eit AP i ¥

z, acosB-cosmt with sinB=m/(m+1).

The first line confirms the well-known fact that the orthogonal
projection of the spherical helix onto the base plane I (z =0)
is an epicycloid (A.ENNEPER, 1882).

Since the helix q, admits the decisive isometry u, (angle
a=mn/m), its stereographic image q is a curve which coincides
with its inverse q° after a rotation through the angle o about
the center 0 (Fig.31). From the fact that ¢, is an orthogonal

trajectory of the system of great circles g, mentioned above,
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oa=45°
sin 3=4/5

Fig.31: Tractrix of a circle as stereographic image of a
spherical helix and inverted into a congruent copy
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it follows, due to the properties of stereographic projection,
that the image curve q is an orthogonal trajectory of a rota-
tional set of circles g. This means that q is a tractrix of a
circle Ié': Let PQ be a bar of constant length L = a/sin 8, whose
endpoint Q is led along a circle of radius R=acotB = LcosB
(<L); provided the other endpoint P can move only in the in-
stantaneous direction of the bar (for instance because of a
wheel or a sharp edge), it will describe our tractrix g. --

The example of Fig.31 illustrates the situation for the module
m=14 (a=45° B=arcsin(4/5) =53,13°). The drag bar PQ is of
length L = 5a/4, and the director circle of Q has the radius
R=3a/lL. Since the module is rational, the tractrix ¢ is algeb-
raic (of order 18). A parametrical representation of ¢ would

be obtained by inserting the expressions (14.17) into the form-

ula

(14.18) xtiy = ﬁiiniilml

a-z,
which is equivalent with equ. (14.2).

The presented examples show that, in spite of the restric-
tion to the cyclic case, stereographic projection is not quite
useless for our purpose. However it would be difficult to attac
the general problem of congruent-inverse curve pairs by means
of this tool, as then the involved automorphisms wu, of the

sphere Q were collineations unhandy to operate with.

15, Fan Transformations

Let us denote with "fan transformation” that planar point-
to-point mapping t: P+ P which in polar coordinates is defined
by
(15.1) f=r,%=n6 (n>0).

Such a mapping, introduced under the name of "angle stretching"
by E.MUELLER (1917), changes only the polar angles and thus

reminds of the opening (n>1) or the closing (n <1) of a fan;

with n=1 it reduces to identity. For rational values of the con-

stant factor n the mapping T is algebraic, but of rather high
degree (already 4 for n=2 or 1/2).
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Now let ¢ be a plane curve which is related with its in-
verse q° by a rotation through an angle a=u/m about the in-
version center 0 (Section 12) and represented in polar coor-

dinates by
(15.2) r = £(6) with £(6)-f(d+a) =a2.

Applying to g the fan transformation 1 (15.1), we obtain a

curve q described by
(15.3)  F = £(8/n) = g(¥) with g(3)-g(F+na) = a’.

Hence g is a curve of the same cyclic kind, but with the module

w=m/n. In particular with n=m we have m=1 und thus

Theorem 13: Any solution curve q of the cyclic case with
the module m is by a fan transformation with the factor n=m

mapped onto an anti-anallagmatic curve q.

Conversely we may derive solutions ¢ of the cyclic case by
applying a fan transformation T onto an arbitrary anti-anallag-
matic curve g. Starting, for instance, from a circle ¢ which

meets the inversion circle j at opposite points (Fig.3), i.e.
(15.4) %2 +32 -a2 = 2bx or ¥2 -2bt cos$-a’ = 0,
we find solution curves g determined by
(15.5) r? - 2br cosmb - a’ = o.
All these curves with different modules are fan transforms of
each other, if they are derived from the same circle q.

With m=2 (a=90%) we obtain the centric curve g of Fig.32.
Its cartesian equation reads
(15.6)  (x2+y?)(x*+y?-a®)? = 4b?(x?-y?)?

and says that ¢ is a bicircular sextic with an isolated double
point at the center. The curve is an oval, if 150> £4°,

With m=3 (a=60°) we meet again the anti-anallagmatic
quartic (14.15) of Fig.30.

With m=3/2 (a=120° we obtain the anallagmatic curve of
Fig.33; it is of order 10.
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Yy m=2 (x=90°)
e=1/2
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Fig.32: Bicircular sextic as a fan transform of a circle

A possibility to modify the fan transformation (15.1) with-
out derogating the purpose in mind consists in replacing r
by any power r?. Especially with p=n we obtain conformal

mappings. For reasons of dimension we may then write
(15.7) i/a = (r/a)", & = no

or, in complex notation,

(15.8) 5/a = (z/a)".

For n=2 or n=1/2 this mapping is quadratic. Applying the
(inverted) mapping (15.7) to the circle a (15.4), we find

curves q determined by

(15.9) 2P - 22" br" cos no ot 2 0.
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Fig.33: Curve of order 10 as a fan transform of a circle

With n=2 (a=90°) we meet again the Cassinian quartic
(14.10); with n=1/2 (a=360°) we obtain the anallagmatic
Pascal snail of Fig.6.

The last example concerns the curve with the equations

(15.10) r = a-cot 26 or 4x2y?(x*+y?) = a?(x?-y?)?2.

This circular sextic, depicted in Fig.34, is known as the

"windmill" |3, p.22]. It is a fan transform of the anallag-
matic strophoid (3.1) as well as of the kappa-curve (12.20),
the latter being a conformal mapping of the anti-anallagmatic

quartic (12.19); compare Figs. 18 and 19.
Turther examples might be added ad 1libitum.
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Fig.34: Circular sextic ("windmill") as a
fan transform of the kappa-curve (Fig.19)
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