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Abstract—Planar cam mechanisms of the kind considered here are subject to two conditions [Duca and Simionescu,
Mechanism and Machine Theory 15, 213-220 (1980)]. By weakening one of the conditions, which is restrictive,
more practicable forms are achievable. The design is based on the choice of a certain part of either the cam
profile or of the transmission law. Mathematical analysis leads to a functional equation, which is the same as
that in the similar problem with flat-faced follower pairs, solved in a previous paper [Wunderlich, J. Mechanisms
6, 1-20 (1971)]. All formulas for synthesis are developed. Analytical solutions, among them algebraic ones,
provide particular examples of plane curves with a movable closed chord polygon.

1. INTRODUCTION

Cam mechanisms serve to transform a rotation into
an oscillating motion. Such a mechanism consists of
three elements: The fixed frame X, the rotating cam
Z,, and the oscillating follower Z,. In general the
follower is combined with a spring which presses it
against the cam to secure steady contact. To avoid
vibrations which may occur in high-speed mech-
anisms, the spring may be replaced by a second
follower, rigidly connected with the first and operated
by a second cam integral with the first cam. The idea
of combining the two cams into one restricts the
variety of possible transmission laws and leads to
rather difficult geometrical problems[2].

In the commonly used planar type of cam mech-
anisms the motions X,/Z, and X,/X, are rotations
about parallel axes. Reducing everything to a design
plane orthogonal to the axes, we have a disk profile
¢ turning about a center O, and a follower profile p
rotating about a pivot P and always touching c at a
varying point T (Fig. 1). Denoting the rotation angles
of Z, and Z, by ¢ and ¢, respectively, the behaviour
of the mechanism is characterized by the transmission
law y(¢), a function with period 27.

To construct the unknown cam profile ¢ for a given
follower profile p, and for prescribed transmission
law ¥ (¢), we consider the mechanism from the point
or view of an observer in the cam system X,: ¢ appears
then as the envelope of all the positions of p occupied
in the course of the relative motion X,/X,. The
common normal of ¢ and p at the contact point T
passes through the instantaneous pole 7 of this mo-
tion. According to the well-known Aronhold-
Kennedy Theorem, this relative pole 7 is situated on
the line OP and divides the segment OP in the ratio
OI: PI =dy :d¢ (Fig. 1).

tEmeritus Professor of Geometry.

tAn isoptic curve is the locus of points from which two
tangents to a given curve make a constant angle.
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For a flat-faced follower—p being a straight line
(passing through P)—the analytical determination of
the cam profile ¢ has been given in a previous
paper[2]. In the same paper the problem of single-
disk cams operating a flat-faced follower pair has
been completely solved: The respective cam profiles ¢
are characterizable as ‘‘curves with an isoptict cir-
cle’’[3]. The simplest example, indicated already by
Goldberg[4], uses an ellipse c to operate the arms of a
right-angle follower pair; see [2], p. 7.

Circular follower profiles are of special interest for
roller followers; here the follower arm has a circular
roller p of radius e at its extremity 4. For this type
of cam mechanism it is convenient to consider the
relative path ¢ of the roller center A: The working
cam profile ¢ is equidistant (at the distance e) to that
more important ‘‘pitch profile’’ ¢ (Figs. 5 and 9). In [2]
the author doubted the existence of single-disk cams
with an oscillating pair of rigidly connected roller
followers that function precisely. This wrong conjec-
ture, caused by omitting a very special arrangement,
was corrected in a recent note of Duca and
Simionescu[l]. To delete an unnecessary restriction
and to clarify the character of admissible trans-
mission laws, the subject will be treated anew. More-
over, a close connection will be revealed between the
actual problem and the settled problem of flat-faced
follower pairs.

2. EXISTENCE CONDITIONS

Let us consider a planar single-disk cam mech-
anism with pitch profile ¢ rotating about the center

Fig. 1. Cam with oscillating follower.
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Fig. 2. Adjacent positions of a double follower.

O. The arms PA and PB of the double follower are
supposed to have equal length P4 = PB =[; the case
of unequal follower arms seems to be rather hopeless.
The invariant angle ¥ APB = 2a will be measured in
that sector which does not contain the cam center O.
The distance from O to the follower pivot P is
denoted by L (Fig. 2).

Starting from an arbitrary position 4,P,B, of the
follower, and observing all from the cam system X,
we identify after a certain time an adjacent position
A,P,B, with A4,= B, Proceeding in this way, we
obtain an equilateral polygon A,P\A,P,... of side
length /, whose vertices P; are situated on a circle A
with center O and radius L, whereas the vertices 4,
are alternatively distributed over two concentric cir-
cles h, and h, (Fig. 2). These points form a chord
polygon A\A,A; ... of ¢ with constant side length
s = 2[ - sin a. Each of the chords 4,4, , , = A,B, is seen
from the center O under the same angle f. In general
this angle is variable, and it depends on the value /B
whether the polygon is closed or not: For = /g ratio-
nal, the polygon closes after a finite number of steps;
otherwise the polygon never closes. Consequently, in
general (i.e. for B # const) the pitch profile ¢ will
contain, at any instant when n/B takes an irrational
value, two infinite and everywhere dense point sets
{4,4;4;. ..} and {4,4,4. ..} on certain concentric
circles h,, h,, and this circumstance excludes prac-
ticable cams|[2].

The situation, however, is quite different in the case
B = const, overlooked in [2], but investigated in [1]:
Observing the mechanism from the follower system
Z,, we can say that all points O from wherat the
(fixed) segment AB subtends a constant angle f must
lie on a circle passing through 4 and B. Due to
OP = L = const, this circle has its center at P, and we
obtain the necessary condition

1=, 2.1
stated as condition (1) in [l]. As an immediate
consequence we have f =a. Moreover, to exclude
infinite chord polygons we have to assume a rational
value of n/B == /a, explicitly

nle=n=2A/u>1, 2.2)
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where 4 and p <A are natural numbers without
common factor. The corresponding condition (2) in
[1], demanding an integer value of n(u = 1), imposes
a superfluous restriction, which is mischievous for the
actual purpose (compare Figs. 5 and 9). However,
there is another restriction to be mentioned: it will

_ turn out in Section 3 that the characteristic number

n = A/p must have an odd denominator u; otherwise
the pitch profile ¢ would cross itself.

We shall see that under circumstances that satisfy
the three stated conditions the construction leads to
suitable results, although only small numbers A and
u are useful for practical purposes.

3. CAM DESIGN

Let us measure the rotation of the follower 4PB by
the angle ¥ which the bisector of the angle
¥ APB = 2a makes with the base line OP. Consid-
ering the mechanism from the cam system Z,, we see
that two adjacent positions APB and 4A'P’B’ with
A’ = B are mirror images with respect to the axis OB,
provided condition (2.1) is satisfied (Fig. 3). Hence
the passage from APB to A’P’B’ induces the change
of y to —y.

Due to X AOB = ¥ A’OB’ =« the next position
A"P"B" with A" = B’ is related with 4 PB by rotation
about O through the angle 2a. Continuing the pro-
cedure of adding adjacent positions, we arrive at a
remarkable linkage which is closed, if—according
with condition (2.2)—the ratio m/a is a rational
number n = A/u. This overconstrained linkage consists
of a chain of 24 isosceles triangles joined by 24 spokes
with a fixed central hinge at O. If all joints are movable,
the linkage admits a one-parametric deformation. Since
all odd-numbered spokes form invariant angles 2a, they
constitute a rigid system, and the same holds for all even-
numbered spokes. Hence the linkage is composed of 24
triangles and two A-gons; the number of (binary) joints
is 24 + 1. Figure 4 shows the linkage for the case n =
3 (e = 60°).

From the fact that the deviation angle y of the
follower changes its sign during the phase
APB—A’'P’'B’, it follows (for reasons of supposed
continuity) that there exists at least one mean posi-
tion A4,P,B, with y, =0. Starting from such a zero
position, the chain of adjacent positions 4,P,B; with
A;= B;_, generates a regular polygon AA,... A,
provided u is odd (condition 3); for u even, the

Fig. 3. Chebyshev dyads forming a plagiograph of Sylvester.
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Fig. 4. Overconstrained linkage.

polygon would close already after 4 steps. All vertices
A, belong to the required pitch profile ¢ of the cam;
for u even, they would be double points:

In the case of an integer number n(A = n, u = 1) the
regular chord polygon 4,A4,...A4,, is convex. To
construct a suitable profile curve ¢, we may prescribe
arbitrarily (but within reasonable limits) the arc ¢,
from A, to A, = B,. The rest of the profile ¢ is then
completely determined: Using an auxiliary linkage of
the kind represented in Fig. 4, and leading its joint A4
along the given arc ¢,, the other joints 4, 4”, . .. will
describe the missing portions ¢, ¢, ..., ¢, of the
required profile ¢. In the case of a fraction n =1/u
(0>1 and odd), the regular chord polygon
AA, ... Ay, is star-shaped (Fig. 9). Now we may
arbitrarily choose only a partial arc ¢, from A4, to one
of the two neighbouring vertices, but the way to find
the rest of the profile ¢ is the same as before. The
angular distance from A, to its neighbours is
di=dn/A.

The decisive point-to-point mapping y: A— A' which
transforms the initial are c, into a new part ¢; = ¢, of
the profile ¢, and generally any known arc ¢, into another
part ¢; = C,.,, is mechanically affected by means of a
simple device consisting of the triangle APA’ and the
crank OP turning about O (Fig. 3). With respect to OP
= PA = PA’' = [ this mechanism of freedom 2 may be
called a generalized Chebyshev dyad, its original form
appears with <L APA’ = 2a = n(n = 2, Fig. 8). The
mapping y, which is also simple to execute graphically,
is an algegbraic two-to-two transformation of order 4:
When the point A is led along a straight line g (not passing
through O), then the image point A’ describes a (sym-
metric) coupler quartic g’ of the slider-crank mechanism
g-AA'P-0O. In Fig. 4 the initial arc ¢, was chosen as a
part of a circle (center C,); consequently, the derived arc
¢! = ¢, is part of a (symmetric) éosmputer sextic generated
by the four-bar C,-AA'P-0. CotpZer

Repeating the transformation y, we obtain the
mapping y* A —A" which is, due to 04 = OA" and
¥ AOA" = 2a, a rotation about the center O through
the angle 2a. It is effected by means of a particular

plagiograph of Sylvester, composed of two Chebyshev
dyads (Fig. 3). Consequently the next portion
¢y = ¢4 = ¢ of the profile ¢ is directly congruent with
¢, (Fig. 4). Analogously we have ¢, ~¢,, ¢s ~ ¢~ ¢y,
etc. Thus, we state that the working profile ¢ of the
cam also admits the rotation with angle 2a about O,
and likewise consists of alternating arcs of two kinds.

Figure 5 shows a possible form of a single-disk cam
mechanism with an oscillating double roller follower,
based on the scheme of Fig. 4 (n =3, « = 60°). The
arrangement is somewhat unconventional, as the
follower pivot P lies within the cam disk.

4. ANALYTICAL SOLUTION

Introducing polar coordinates r, 6 in the cam
system X,, it may be convenient for the observer in
Z, to count the polar angles in opposite sense (Fig.
3). The important mapping y: A(r,0)—-A'(r’,0) is
then determined—applying the cosine theorem to
triangle 40A'—by
0'=0+a.

r24r?—2rr’ cosa = 4/*sin’ a, 4.1)

The rotation y% A(r,0)—A"(r",0") is described by

r'=r, 0"=60+2a. 4.2)
Provided we know the polar equation r =r(6) of
the chosen arc ¢, of the pitch profile ¢ of the cam
(Section 3), we find the equation r’=r’(0’) of the
corresponding arc ¢;=¢, by solving the quadratic
eqn (4.1), thus, obtaining
r'=rcosa+./(4>—r? - sina. 4.3)

With respect to condition (2.2) and the con-
sequences revealed in Section 3, the function r(0) is
supposed to be defined in an interval of length
d =m/A =a/u, for instance in 0 < 0 < 6. The associ-
ated function r’(0’) is then obtained in the interval
a<0'<a+0d=(u+1a/u. For reasons of con-
tinuity eqn (4.1) has to be satisfied with r =r(0) and
r’=r(d). All of the additional portions ¢, é,, . .. of
the profile ¢ might be found by successively con-

n=3

Fig. 5. Single-disk cam mechanism with oscillating double
roller follower.
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tinuing the procedure, but we know already that they
are congruent either with ¢, or with ¢,. This fact is in
accordance with eqns (4.2), although the latter are
not the only possible consequences of eqn (4.1); see
[3], eqn (3.5). Unifying now all the partial functions
defined in different intervals of length 6, we obtain a
periodic function describing the profile ¢ as a whole.

In order to find the transmission law () associ-
ated with the given profile function r(f), we take
from Fig. 3:

cos(p —0)=r(0)2l, ¥y +a=2¢ —80). (4.9
By solving these equations we obtain ¢ and Y as
functions of 6, hence a parametric representation of
the required law.

Moreover, we see from Fig. 3 that the rotation
angles ¢ and ¢’, belonging to adjacent follower
positions APB and A'P’B’, are related by

O+ ' =20"=20+2a=2¢ —¢ +a. (4.5

With attention to the corresponding oscillation an-
gles  and Y’ = —y we state a linear transformation
¢’ =¢—v+a

v'=—y. (4.6)

Repeating this step, we attain

' =¢ =y ' +ta=¢+20, Y"'=y. (4.7)
This means that y(¢) is a periodic function with period
2o = 2m/n = 2un/A. Taking into account the natural
period 27, it follows that any linear combination u - 2a
+ v - 2z with integers  and v is also a period of y(¢).
Choosing for u, v a solution pair of the Diophantine
equation uu + Av = 1, we find the fundamental period

20 = 2m/A. Hence it holds

Y(@)=y(¢ +26) with 6 =n/i=a/p (4.8)

Introducing now a =pud in eqn (4.6) and remem-
bering that p is odd (Section 2), we find the following
pair of values also corresponding in the transmission
law:

d=¢—v+6 ¥=—y. 4.9)
The geometrical interpretation of this linear mapping
(¢, ¥)—(P, ) means that the Cartesian graph of the
law Y (¢) admits a certain affinity. Its effect is illus-
trated in Fig. 6 by applying it to the rectangle with
the vertices (0, 0), (6, 0), (J, ¢), (0, ¢); the image under
(4.9) is the parallelogram with the vertices (J, 0), (25,
0), 2d—¢, —¢), (0—¢, —e¢).

Consequently, the transmission law ¥ (¢) can be
prescribed only in a relatively small interval of length
¢ =m/A; the rest is completed by application of eqn
(4.9) and repetition with the period 26. In choosing
the initial part it is necessary to take care to avoid
discontinuities and corners of the graph.

W. WUNDERLICH
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Fig. 6. Transmission law of the cam mechanism of Fig. 5.

To construct a cam for a given transmission law
¥ (¢) which satisfies the condition (4.9), the polar
function r(0) of the pitch profile ¢ may be derived
from eqn (4.4). We obtain

1
0=¢—5(¢ +a), r=21-cos¢;-a,

(4.10)

where ¢ serves as the independent variable.

5. CONNECTION WITH THE PROBLEM OF FLAT-FACED
FOLLOWER PAIRS

The solution expounded in the preceding sections
depends on a suitable choice of a part of the pitch
profile ¢ or of the corresponding part of the trans-
mission law ¥ (¢). Hence the complete cam profile is
“patched up” of components of different kind: Com-
pare the example of Figs. 4 and 5, where the profile
¢ is composed of circular arcs ¢;, ¢;, ¢; and of parts
Cy, Cs4y Cg Of coupler sextics. From the mathematical
point of view an analytically closed solution would be
more welcome. This means that the function r’(0")
should be the analytic continuation of r(f). Hence
r(0) should satisfy the functional equation

r24r?—2rr’ cosa =4/*sin’a with r' =r(0 + ).

(5.1)

This equation is of just the same type as eqn (4.1)
in [2] which is the key equation for the similar
problem of single-disk cam mechanisms with a
flat-faced follower pair. Indeed there exists a close
connection between the two problems: Erecting in
Fig. 3 the perpendiculars p 1L OA atA,p’ 1L OA’ at A’
etc., we obtain an equiangular polygon inscribed in a
fixed circle with radius 2/. Since its angles have the
common constant value 7 — «, the sides p, p’, . . rep-
resent adjacent positions of a rigidly connected pair of
flat-faced followers operated by a single cam disk, whose
profile c* is the envelope of the varying positions of the
polygon sides. Hence c* is a curve with the isoptic circle
(0,21); this characteristic property of c¢* was mentioned
in Section 1. Conversely we state: OQur pitch profile ¢ is
a pedal curve of c*, i.e., the locus of the bases (4, A’,
. .) of the perpendiculars dropped from the center O onto
the tangents (p, p', . . .) of c*.

Instead of adopting the analytical solution (4.9)
from [2] and duly adapting it for the present purpose,
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we prefer to develop the solution of eqn (5.1) directly.
First we introduce an auxiliary Cartesian frame
(0; X, Y) which rotates about the origin O in such a
manner that the symmetral X = Y always coincides
with the bisector of the angle AOB (Fig. 7). Hence the
coordinate axes form equal angles ¥ XOA4 =
¥ BOY = ¢ with the rays OA and OB; their constant
value is

o =(n/4) — (2/2). (5.2)
The radial distances r = OA and r’ = OB are linear

combinations of the coordinates X and Y of the pivot
P, namely

r =2aX +bY),
a = cosa,

r’=2(bX + aY)
with b =sino. (5.3)
Evidently the quantities X and Y are periodic func-
tions of 0, with the same period 2o as r(6) and
r’=r(0 + o). Moreover they satsify the relations

XO@+a)=Y@0), YO +a)=X(0). (54
These relations correspond to the passage from APB
to A’P’B’, and may be formally checked by means of
the inversions

ar — br’ ar’ — br
2sina

" 2sina’ s

Inserting now the expressions (5.3) in eqn (5.1), this
functional equation reduces to

X +Y2=P with Y@)=X(©0+a), (54)

a simpler form of the condition OP = [. Due to eqns
(5.4) the variable difference
X2—-y*=4 6.7

is a periodic function of 6 satisfying the relation

A0 +a)=—A4(0). (5.8)
For an arbitrary function 4(0) we find
1 1
X2=§(12+ 4), Y? =§(l2 —-4). (59

Making use of eqns (5.3), we finally attain the
required solution of the functional eqn (5.1):

r=/2la/IP+40)+b /- 40)]
_ n 4 bl n o
with 47 (Z N E)’ = (Z N 5)' (5.10)

Arguing as in Section 4, we state that the auxiliary func-
tion A(6), possessing the commensurable periods 2o and
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Fig. 7. Auxiliary Cartesian frame.

27, has the fundamental period 26 and satisfies the con-
dition

AO —8)=—A4@0) with s=n/i=a/u (5.11)

Consequently, 4(8) can be chosen only in an interval
of length 6.

To secure real values of the square roots in formula
(5.10), the restriction |4(#)| < {* is necessary. The
associated transmission law Y/ (¢) is to calculate as
indicated in eqns (4.4).

Another way to solve the problem has been used
in [5]: Fastening to the follower APB a third arm PQ
of length / and which is positioned along the bisector
of the angle APB, its endpoint Q will describe a
certain path g in the cam system Z,. Since Q repeat-
edly passes through the center O, this path g has the
shape of a rosette. Choosing one of the congruent
leaves of ¢ (within rather narrow limits), and repeat-
ing it, the motion X,/Z, is completely determined by
leading P along the circle (O, /) and simultaneously
Q along the rosette g. Hence the pitch profile ¢ of the
cam is kinematically generated as the common path
of the points 4 and B. The corresponding eqn (6.2)
in [5], describing the profile ¢, is easy to derive, but
not so advantageous as eqn (5.10) above.

6. ALGEBRAIC EXAMPLES

The simplest choice of a suitable auxiliary function
A4(0), satisfying condition (5.11), is

A=m?cosA@ with O0<m<|.

The resulting profile ¢, represented by its polar eqn
(5.10) or in Cartesian coordinates by
x=r-cosf, y=r-sinb, (6.2)
is algebraic, but in general not rational.
In the case n =2, for instance, we have 1 =2,
a =0 =mn/2,a=1,b=0. The pitch profile ¢, repre-
sented by

r? =2(1* + m*cos 20)
or
(2 + p2P = 2% + mH)x? + 21> — m¥)y?, (6.3)
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is a bicircular quartic known as “Booth’s lemniscate”
(Fig. 8).

Corresponding to a remark in Section 5, it is the
central pedal of Goldberg’s ellipse[4]. This curve ¢
and also the equidistant cam profile ¢ are ovals, if
m? < [*/3. The follower now has stretched arms, since
¥ APB =20 = n. Considering the closed chain of
adjacent follower positions around the cam, we detect
an apparently unknown property of Booth’s lemnis-
cate: It contains a movable chord rhombus AA’A"A"
with constant side length s = 2/ (Fig. 8).

The order N of a curve ¢ belonging to the family
(6.1) is the number of intersection points (real and
imaginary) with any straight line, and may be found
by considering the line equation Ax + By = C, after
inserting there the quantities (6.2), (5.10) and (6.1),
and then passing, by means of Euler’s formula, to the
algebraic parameter ¢t =e”. The degree N of the
resulting equation in ¢ has (with exception of the case
n = 2) the value

4(A +2) for 4 odd,
i {2(1 +2) for A even. 64

Thus the pitch profile ¢ in Fig. 9 which illustrates
the case n =4/3 is of order 12; here we have 1 =4,
a =135, 6 = —22.5°, a =0.924, b = — 0.383. Since
the double follower is right-angled and the pivot P is
outside of the cam disk, the arrangement looks more
familiar than in those devices which are obtained
under the restrictive condition of integer values » in
[1.

A vast variety of algebraic cam profiles is obtain-
able by combining several terms of the kind (6.1) in
a trigonometric polynomial

A =Y (a;cos jA0 + b;sin jAB), j odd. (6.5)
j

Suitable choice of coefficients a;, b; will allow approx-
imation to any wanted transmission law, and that without
discontinuities of derivatives.

Similar but less simple algebraic solutions are
obtained by means of the other method, indicated at
the end of Section 5, by choosing an algebraic rosette
q (e.g. a suitable hypotrochoid, see Fig. 6 in [5]).

Fig. 8. Booth’s lemniscate with movable chord rhombus.
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n=4/3
a=135°

60° ¢

Fig. 9. Cam mechanism and transmission law.

In 1939 Fischer[6] raised the problem concerning
the existence of plane curves (apart from the circle)
in which an equilateral chord polygon with a certain
side length s always closes, wherever it begins. Obvi-
ously the solution of our cam problem offers a family
of special solutions of the geometric problem: The
chain of adjacent follower segments AB of length
s=2lsina is a movable (and deforming) chord
polygon of the pitch profile ¢; see the rhombus in Fig.
8, the hexagon in Figs. 4 and 5, and the star-shaped
octogon in Fig. 9. Although special, as distinguished
by the fact that all chords subtend the same constant
angle o from the center O, our solutions are insofar
remarkable, as they contain an infinity of algebraic
examples, whereas Fischer’s solutions, if analytical at
all, are transcendent. By the way, for the purely
geometric question the restrictions pu odd and
|4 | < I* may be dropped.

7. CONCLUSION

Planar single-disk cam mechanisms with a oscil-
lating double roller follower—whose possibility was
doubted in [2], but proved in [1]—exist under three con-
ditions:

1. The common length / of the\follower arms PA
and PB must be equal to the distance between the
rotation center O of the cam and the pivot P of the
follower.

2. The angle & APB = 2o of the follower arms
must be commensurable with the full angle 2x.

3. The rational fraction n/x =n =A/u > 1 must
have an odd denominator p. (For practical purposes
only small integers A and pu are useful.)

The cam disk shows a certain periodicity (cyclic
symmetry): it admits the rotation about the center O
through the angle 26 = 2rn /4 = 2a/u. The polar equa-
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tion r = r(0) of the pitch profile ¢ (equidistant to the
working cam profile c) satisfies the functional equa-
tion

r(0) + r¥6 + «) — 2r(8)r(0 + o) cos a = 4/” sin’ a.
1.1)

Analytical solutions of this equation are represented
by formula (5.10). They depend on the arbitrary
choice of an auxiliary periodic function 4(6) obeying
the law 4(0 +6) = —4(0). Appropriate functions
A(0), e.g. (6.1) or (6.5), provide algebraic solutions;
these curves are also of purely geometric interest, as
they possess movable closed chord polygon (Section
6). There exists a close connection between the
present problem and the similar problem of flat-faced
follower pairs operated by a single-disk cam (Section
5).

The transmission law /(¢ ), relating the oscillatory
motion of the follower with the rotation of the cam,
has the period 26 and satisfies the conditions

F=¢—v+o ¥=-y.

This means that the Cartesian graph of Y (¢) admits
a certain affine mapping onto itself.

For the synthesis of the cam mechanism with a
given follower angle 2« either of two possibilities is
indicated:

(1.2)

415
(a) A section of the pitch profile ¢, subtending the
angle ¢ from the center O, may be suitably chosen.
The rest of the profile is then completely determined
and simply derivable (Section 3). The corresponding
transmission law is obtained by means of eqns (4.4).
(b) Prescribing the transmission law y(¢) in an
interval of length 6, the rest is completely determined
by the relations (7.2). The pitch profile ¢ of the
associated cam is found by means of eqns (4.10).
A remarkable overconstrained linkage, connected
with the cam mechanism, is discussed in Section 3.
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EINSCHEIBEN-NOCKENTRIEBE MIT DOPPELTEM ROLLEN-SCHWINGHEBEL

W.WUNDERLICH

Kurazfassung - Ebene Nockentriebe der genannten Art - deren Moglichkeit
in [2] bezweifelt, jedoch in [1] nachgewiesen wurde - existieren unter

drei Bedingungen:

1. Die gemeinsame Lange 1 der beiden Schwinghebelarme PA und PB nul
mit dem Abstand des Nockenzentrums O vom Hebellager P iibereinstimmen.
2. Der Winkel ¥ APB=2a muB mit dem vollen Winkel 2n kommensurabel

sein.

3. Der rationale Bruch n/a=n=A/u>1 muB einen ungerader Nenner u

haben.

Die zugehdrige Nockenscheibe gestattet die automorphe Drehung um O

durch den Winkel 26 = 2n/X = 2a/u. Die Polargleichung r =r(8)

des Leit-

profils & befriedigt die Funktionalgleichung (7.1). Analytische Losun-

gen

von 4(6), z.B. (6.1) und

darstellbar durch (5.10), hdngen von einer willkiirlichen Funktion
A(BS ab, welche die Bedin%ung a(8+6)

= -A(8) erfiillt. Passende Annahmer.

6.5), liefern sogar algebraische LOsunger,

die auch von rein geometrischem Interesse sind.

Das Ubertragungsgesetz V(¢) des Getriebes weist ebenfalls die Peri-
ode 26 auf und unterliegt der Bedingung (7.2), welche besagt, daB das
kartesische Diagramm eine gewisse Affinitat vertragt.

Fiir die Synthese des Nockentriebs bieten sich zwel entgegengesetzte
Wege an, die auf der Wahl eines (relativ kleinen) Abschnitts entweder
des Leitprofils oder aber des Ubertragungsgesetzes beruhen.

Bestehende Zusammenhénge mit_dem verwandten Problem eines gerad-

flankigen Schwinghebelpaares

den herausgestellt.

2], mit einem libergeschlossenen Gelenk-
werk (Fig. 4und 8) sowie mit einer alten geometrischen Frage (6]

wer-





