ELEMENTE DER MATHEMATIK
Pine Familie von geschlossenen gleichflächige
Polyedern, die fast beweglich sind

Eine Familie von geschlossenen gleichflächigen

Das Vierhorn

§1. Seit Cauchy (1812) weiss man, dass ein konvexes Polyeder mit unveränderlichen Seitenflächen bei gelenkigen Verbindungen längs der Kanten starr erscheint, weil seine Gestalt eindeutig bestimmt ist. Eine kleine Lücke im Beweisgang wurde später von Steinitz [6] ausgefüllt.
Nach Verzicht auf die Forderung der Konvexität kann die Eindeutigkeit der Form verlorengehen. Es lassen sich leicht nichtkonvexe Polyeder vom topologischen Typus der Sphäre angeben, die einen sprunghaften («kippenden») Übergang zwischen zwei existierenden Gestalten erlauben [6,8]. Rücken zwei solche Nachbarformen zusammen, so entsteht ein infinitesimal bewegliches «Wackelpolyeder» mit am Modell deutlich merkbarer Instabilität. Das erste Beispiel gab Blaschke [1] mit seinen Wackeloktaedern; weitere Beispiele finden sich bei Goldberg [4] und beim ersten Autor dieser Mitteilung [9]. Wackeligkeit bleibt bei konvexen Polyedern noch ausgeschlossen [3], während sie sich bei

89

$$
\text { El. Math., Vol. 41, } 1986
$$

nichtkovexen sogar als projektiv invariant erweist [5, 7, 10], d.h. bei affinen oder kollinearen Transformationen des Polyeders erhalten bleibt.

Eine stetige Formänderung endlichen Ausmasses wurde jedoch, auf praktische Erfahrungen gestützt, bei einem geschlossenen Gelenkpolyeder die längste Zeit für unmöglich gehalten, bis Connelly [2] sein sensationelles Gegenbeispiel bekanntmachte. Sein 18Flach wurde dann von Steffen durch ein einfacheres 14-Flach noch verbessert [2]. Auf der Suche nach weiteren einschlägigen Beispielen entdeckte der zweite Verfasser der vorliegenden Note 1981 sein verblüffendes «Vierhorn», ein 16-Flach, das sogar zwei vollkommen platte Grenzformen annehmen kann. Als er das Modell auf der faszinierenden «Phänomena»-Ausstellung in Zürich 1984 zur Schau stellte, war er sich gewisser geringer Unstimmigkeiten bereits wohl bewusst. Der Beitrag des ersten Autors besteht nun in der quantitativen Analyse der vorhandenen Abweichungen.
$\S 2$. Sei $A B S$ ein gleichschenkliges Dreieck mit dem Basiswinkel α und der Schenkellänge $A B=A S=a$. Die Basis $B S$ hat dann die Länge

$$
b=2 a \cos \alpha<2 a .
$$

(2.1)

Fügt man vier solche Dreiecke zu einem Vierkant $S A B C D$ mit der Spitze S zusammen ($S A=S C=a, S B=S D=b$), so ist dieses doppelt symmetrische, kurz als «Horn» bezeichnete Gebilde zwangläufig verformbar (Freiheitsgrad 1). Seine Öffnung ist berandet von einem windschiefen Rhombus $A B C D$ mit der Seitenlänge a.

Wird dieses Horn mit seinem Spiegelbild bezüglich der Ebene $B A D$ vereinigt, so erhält man ein «Zweihorn», das noch immer zwangläufig beweglich ist und ebenfalls einen windschiefen Rhombus $B C D \bar{C}$ mit der Seitenlänge a als Öffnungsrand aufweist (Fig. 1). Dessen jeweilige Gestalt ist im Hinblick auf die bekannte Seitenlänge a durch die ortho-gonal-windschiefen Diagonalen $B D=2 p$ und $\bar{C} C=2 q$ bestimmt. Die Parameter p und q sind allerdings nicht unabhängig voneinander, sondern durch eine noch zu ermittelnde Relation $F(p, q)=0$ verknüpft.
§3. Unter Verwendung eines dem Zweihorn gemäss Figur 1 angepassten kartesischen Koordinatensystems ($A ; x, y, z$) können die nachstehenden Eckpunkte angesetzt werden durch
$A(0,0,0), \quad B(p, 0, u), \quad C(0, q, v), \quad D(-p, 0, u), \quad S(0, r, w) . \quad$ (3.1)
Die übrigen Ecken sind wegen der bestehenden Symmetrie bezüglich der Ebene $y=0$ mitbestimmt.

Aufgrund der bekannten Kantenlängen genügen die eingeführten sechs Parameter p, q, r, u, v, w insgesamt fünf Bedingungen, was dem Freiheitsgrad 1 entspricht. Zufolge
$A B=A S=a$ gilt zunächst
$p^{2}+u^{2}=r^{2}+w^{2}=a^{2}$.

Aus $B S=b$ und $B C=C S=a$ folgen ferner mit Bedacht auf (3.2) die Gleichungen
(3.3)
 bei Goldbergs «siamesischer Zwillingsdoppelpyramide» [4]-, die viereckige Öffnung des ersten Zweihorns durch ein zweites Exemplar zu schliessen, welches auf den Kopf gestellt und um 90° verdreht ist. Damit ein so entstehendes «Vierhorn» möglich ist, muss

$F(p, q)=F(q, p)=0$

gelten; dann sind nämlich die beiden Öffnungsränder kongruent und passen aufeinander.

 stellung von einem solchen Vierhorn gibt Figur 2. - Ferner existieren mit $p_{1}=0, q_{1}=c$ und $p_{2}=c, q_{2}=0$ zwei vollständig platte Grenzformen, die ebenfalls realisierbar sind
 $p_{2}=c, q_{2}=0$

Abb. 3: Platte Grenzformen des Vierhorns
Wie die Situation in der durch p und q beschriebenen Parameterebene aussieht, zeigt
 $p=q$ und unterscheiden sich bei nicht allzugrossem Winkel α nur wenig voneinander. Wären sie vollkommen identisch - was im Hinblick auf (3.5) gewiss nicht der Fall ist -, so wäre das Vierhorn sogar stetig deformierbar. In Wahrheit kann es aber bloss die drei möglich ist. Wegen der Nachgiebigkeit des Modellmaterials geht dieser Kippvorgang praktisch fast ohne Widerstand vor sich, sofern $\alpha \leqq 30^{\circ}$.

Für den Zeichner seien noch die Scheitelkrümmungen κ_{1} und κ_{2} der Diagrammkurve Potenzreihenentwicklungen findet man die Formeln

$$
c \kappa_{1}=1+\frac{2 c^{2}}{b^{2}}-\frac{c^{2}}{a^{2}}=\cos ^{4} \alpha+3 \sin ^{4} \alpha
$$

 nicht merkbar, doch wurde in einer Seitenfläche ein Ventil vorgesehen, um durch Aufblasen des Modells den Start aus den (wackeligen) platten Grenzformen zu erleichtern. Ein
kleines, mit $\alpha=15^{\circ}$ angefertigtes Kartonmodell $\left(a^{2}: b^{2}=1: 2+\sqrt{3}\right)$ ist sehr schlank und funktioniert dank $\delta^{*} \approx 0,09 \%$ verblüffend glatt.

II. Das Sechshorn

иәр sep иви ииәм 'и!̣ чэ! Ausgang bildende einfache Horn aus §2 nicht bloss verdoppelt, sondern in Form eines drehsymmetrischen Kranzes aus $n>2$ Exemplaren wiederholt. Auf jedes einzelne Glied лә|

$\alpha<\frac{n-1}{2 n} \pi$

angenommen werden. Für $n=3$ verlangt dies $\alpha<60^{\circ}$, mithin $b>a$; für $n=4$ hat man hingegen $\alpha<67,5^{\circ}$, also $b / a>0,765$.

Die Öffnung des solcherart gewonnenen n-Horns ist berandet von einem gleichseitigen, gezackten $2 n$-Eck der Seitenlänge a, dessen Ecken abwechselnd auf zwei koaxiale Kreise verteilt sind. Werden die Radien dieser beiden Kreise mit p und q bezeichnet (vgl. Fig. 8), so können die Ecken des Ausgangselementes $A B C D S$ angesetzt werden mit

$$
A(0,0,0), \quad B(p \sin \omega, p \cos \omega, u), \quad C(0, q, v)
$$

Aufgrund der bekannten Kantenlängen $A B=A S=a$ gelten wieder die Gleichungen

(I'S)
Sechshorn II.Typs

spüren lässt. Dem in der Ausstellung präsentierten Blechmodell mit Scharnieren lag die
Annahme $\alpha=22,5^{\circ}$ zugrunde $\left(a^{2}: b^{2}=1: 2+\sqrt{2}\right.$, vgl. Fig. 5); die Originalabmessungen чэ!!
Für die in den Figuren 1-4 und 6 verwendete Annahme $\alpha=30^{\circ}(a: b=1: \sqrt{3})$ beträgt

Zur quantitativen Beurteilung der vorhandenen Diskrepanzen berechne man mittels
Formel (3.6) für eine hinreichende Anzahl von p-Werten aus dem Intervall $0 \leqq p \leqq p_{0}$ die

 Eine vorteilhafte Anordnung des Netzes zur Anfertigu
Figur 5; gleichbezifferte Kanten sind dabei zu vereinigen.
Abb. 4: Deformationsdiagramm eines Vierhorns

Abb. 5: Netz eines Vierhorns

 Annalme $\alpha=22,5$ degrande ($a . b^{2}=1.2+\sqrt{2}$, vg. Fig. $)$, dio Orinilamessmgn
 besitzt an und für sich den Deformationsfreiheitsgrad $3 e-k-6=2 n-3$; dieser reduziert sich jedoch bei Erhaltung der Drehsymmetrie auf 1. Die Gestalt des Randpolygons

 $2 n$-Horn durch ein zweites Exemplar des n-Horns ist offenbar nur in einer solchen Position möglich, die durch ein vertauschbares Wertepaar (p, q) gekennzeichnet ist, also wieder durch die Bedingung (4.1).

Brauchbar ist sicherlich das zur Mittelstellung gehörige Wertepaar $p_{0}=q_{0}$, dessen Be-

 $F\left(p, f_{A}\right)=0$ aufscheinen. Ein solches Vorkommnis wurde beispielsweise im Falle des Sechshorns ($n=3, \omega=60^{\circ}$) für die Annahme $a=1, b=1,7$ festgestellt.

Im übrigen lässt sich für das Sechshorn die Mittelstellung elementar bestimmen. Drückt man nämlich in der entscheidenden, mit $q=p$ angeschriebenen Gleichung (5.4) die Kantenlänge $b=B S$ gemäss dem Ansatz (5.2) aus, so erhält man die Bedingung

Demgemäss sind also zwei Fälle zu unterscheiden.

 und die Bestimmungsgleichung

(6.2)
nach deren Auflösung sich alle übrigen Formparameter leicht berechnen lassen. Diese Mittelstellung des Sechshorns ist dadurch charakterisiert, dass die Symmetrieachsen aller sechs Teilhörner parallee (zur z-Achse) verlaufen.

Type II: Das Verschwinden des zweiten Klammerfaktors in (6.1) ist mit Rücksicht auf die erste Gleichung (5.3) gleichbedeutend mit
($\left.\varepsilon^{\prime} 9\right)$
(+9)
Aus der zweiten Gleichung (5.3) ist $v_{1}=2 u_{1}$ zu entnehmen; dies bedeutet, dass das Viereck $A B C D$ ein ebener Rhombus ist (Fig. 8). Die noch fehlenden Parameter sind
$r_{1}^{2}-p_{1} r_{1}-\frac{b^{2}\left(4 a^{2}-3 b^{2}\right)}{6\left(2 a^{2}-b^{2}\right)}=0$.

\quad	$r_{0} \cdot \mathrm{~d} p-r_{0} \cdot \mathrm{~d} q+u_{0} \cdot \mathrm{~d} v=0$,
$r_{0} \cdot \mathrm{~d} q-2 r_{0} \cdot \mathrm{~d} r-w_{0} \cdot \mathrm{~d} v=0$.	

Aus diesem linear-homogenen Gleichungssystem findet man (unter Ausschluss von
$\left.r_{0} u_{0}=0\right)$:

$$
\mathrm{d} p: \mathrm{d} q=\left(w_{0}-u_{0}\right)^{2}:-3 w_{0}^{2} \text {. }
$$

Die die Berührung der Diagrammkurven (vgl. Fig.9) kennzeichnende Bedingung

$\left(S^{\circ}\right)$
$\left(9^{\circ} \mathrm{L}\right)$
Diese Forderung ist, wie man anhand der mit $p=q=2 r$ angeschriebenen Grundgleichungen (3.2) und (5.3) feststellt, nur für
(7.7)
erfüllt. Dies bedeutet: Das aus kongruenten gleichschenkligen Dreiecken mit dem Basiswinkel $\alpha=30^{\circ}$ aufgebaute Sechshorn ist wackelig (sogar von 2. Ordnung). Figur 9 bestätigt den gewünschten Verlauf der Diagrammkurven.
Für die die infinitesimale Deformation (bei festgehaltenem Achsenkreuz) anzeigenden Inkremente findet man - im Einklang mit (7.2) - die Verhältnisse
(7.8)
§8. Die in Figur 9 wiedergegebene Diagrammkurve $F(p, q)=0$ mit $\alpha=30^{\circ}$ ist übrigens nicht von 10 . Ordnung, wie aus (5.10) zu schliessen wäre, sondern bloss von 4 . Ordnung. Dies ist schon durch den Umstand

(1'8)

bedingt, weil dann gemäss (5.8) $Q=-u \sin \omega$ wird. Durchläuft man unter der Annahme (8.1) nochmals den in $\S 5$ beschriebenen Eliminationsprozess, so erhält man anstelle von (5.7) und (5.9) die rationalen Ausdrücke
Aus (5.4) folgt schliesslich unter Beachtung von (8.1) für die Abhängigkeit $p \rightarrow q$ die explizite Darstellung
$q \equiv f(p)=2 a \sin ^{2} \omega \frac{\left(a^{2}-p^{2}\right)(a \cot \alpha-p)}{\left(b^{2}-p^{2} \sin ^{2} \omega\right)(a-p \sin \omega)}$.
Bei dem in §7 gefundenen wackeligen Sechshorn, gekennzeichnet durch $2 \alpha=\omega=60^{\circ}$ und $a: b=1: \sqrt{3}$, wird die Mittelstellung - in Einklang mit (6.2) - für $p_{0}=q_{0}$
Die $2 n$-Hörner mit $n>3$ erweisen sich hingegen unter der Annahme (8.1) als nicht wackelig, wie der Verlauf der Diagrammkurven $q=f(p)$ und $p=f(q)$ lehrt, die einander im Punkt $p_{0}=q_{0}$ nicht berühren, sondern unter einem nichtverschwindenden Winkel schneiden.

LITERATURVERZEICHNIS

$\begin{array}{ll}1 & \text { W. Blaschke: Wackelige Achtflache. Math. Z. 6, 85-93 (1920). } \\ 2 \text { R. Connelly: A flexible sphere. Math. Intelligencer 3, 130-131 }\end{array}$ $\begin{array}{ll}2 & \text { R. Connelly: A flexible sphere. Math. Pexieder. Math. Ann. 77, 466-473 (1916). } \\ 3 & \text { M. Dehn: Uber die Starrheit konver Polyeder }\end{array}$
5 M. Liebmann: Ausnahmefachwerke und ihre Determinante. Sber. bayer. Akad. Wiss. 1920, 197-227.
6 E. Steinitz und H. Rademacher: Vorlesungen über die Theorie der Polyeder. Berlin 1934.
8 (1984).
W. Wunderlich: Starre, kippende, wackelige und bewegliche Achtflache. Elem. Math. 20, 25-32 (1965). -
Snapping und shaky antiprisms. Math. Mag. 52, 235-236 (1979). - Kipp-Ikosaeder I, II. Elem. Math. 36,
153-158 (1981); 37, 84-89 (1982).
9 W. Wunderlich: Neue Wackelikosaeder. Anz. öst. Akad. Wiss. 117, 28-33 (1980).- Wackelige Doppelpyramiden. Anz. öst. Akad. Wiss. 117, 82-87 (1980). - Wackelikosaeder. Geom. Dedicata 11, 137-146 (1981). Wackeldodekaeder. Elem. Math. 37, 153-163 (1982). (1980). - Projective invariance of shaky structures. Acta mech. 42, 171-181 (1982).
$0013-6018 / 86 / 060088-11 \$ 1.50+0.20 / 0$
(C) 1986 Birkhäuser Verlag, Basel

