POLKONFIGURATIONEN IN DER ÄQUIFORMEN KINEMATIK

Walter Wunderlich
(Eingegangen am 23. Januar 1986)

Abstract

Zusammenfassung. Im allgemeinen ist die relative Momentanbewegung zweier komplanarer ähnlich-veränderlicher Systeme $\Sigma_{\alpha}, \Sigma_{\beta}$ als Spiralung um einen Pol $p_{\alpha \beta}=p_{\beta \alpha}$ aufzufassen (Abb. 1). Die bei drei Systemen $\Sigma_{\alpha}, \Sigma_{\beta}, \Sigma_{\gamma}$ auftretenden drei Pole $p_{\alpha \beta}, p_{\alpha \gamma}, p_{\beta \gamma}$ bestimmen einen „Dreipolkreis" $Q_{\alpha \beta \gamma}$, dessen Punkte die folgende Eigenschaft aufweisen: Für einen Beobachter in einem der drei Systeme sind die Bahntangenten eines Punktes von $Q_{\alpha \beta \gamma}$ gleichgerichtet, egal zu welchem der beiden anderen Systeme er gezählt wird; sie weisen überdies zu einem bestimmten „Zielpunkt" $s_{\alpha \beta \gamma} \in Q_{\alpha \beta \gamma}$ hin (Abb. 2). Vier Systeme $\Sigma_{\alpha}, \Sigma_{\beta}, \Sigma_{\gamma}, \Sigma_{\delta}$ geben Anlaß zu vier Dreipolkreisen, die einen Punkt, den „Viererpol" $v_{\alpha \beta \gamma \delta}$, gemeinsam haben; die vier zugehörigen Zielpunkte liegen zusammen mit dem Viererpol auf einer Geraden (Abb. 3). Diese Beziehungen beherrschen auch den bei $n>4$ maßgebenden Polplan (Abb. 4).

1. EINFÜHRUNG

Die Idee, fundamentale Begriffe und Sätze der klassischen, euklidischen Kinematik starrer Systeme, die als Grundlage der Getriebelehre von technischer Bedeutung ist, auf die Theorie gesätzmäßig veränderlicher Systeme zu übertragen, geht schon auf L. Burmester [2] zurück. Besonders weitgehend gelingt dies bei der Betrachtung ähnlich-veränderlicher Systeme, die vor allem von tschechischen Geometern eingehend studiert worden sind. Historische Hinweise auf die Entwicklung dieser ,,äquiformen Kinematik" (oder „ஜீ-Kinematik") findet man u.a. bei O. Bottema [1] und K. Drábek [3].

Angeregt durch einen Vortrag von M. Pišl [4], soll im vorliegenden Beitrag die Verteilung der momentanen Geschwindigkeitspole von mehreren ähnlich-veränderlichen Systemen in der Ebene untersucht werden. In der euklidischen Kinematik liegen bekanntlich die drei Relativpole von je drei komplanaren Systemen auf einer „Polgeraden", wie S. Aronhold (1872) und A. B. W. Kennedy (1886) erkannt haben.

Sei also $\Sigma^{\prime} \mid \Sigma$ ein äquiformer Z wanglauf, d.h. ein einparametriger Bewegungsvorgang einer ähnlich-veränderlichen Gangebene Σ^{\prime} gegenüber einer fest gedachten, mit ihr zusammenfallenden Rastebene Σ. Nach Einführung kartesischer Koordinaten x, y in Σ und x^{\prime}, y^{\prime} in Σ^{\prime}, und unter Verwendung der komplexen Größen $z=x+\mathrm{i} y$
und $z^{\prime}=x^{\prime}+\mathrm{i} y^{\prime}$, wird dann der (reelle) Zwanglauf $\Sigma^{\prime} \mid \Sigma$ in bekannter Weise beschrieben durch

$$
\begin{equation*}
z=a z^{\prime}+b \quad \text { mit } \quad a=a(t), \quad b=b(t), \tag{1.1}
\end{equation*}
$$

wobei $a(t)$ und $b(t)$ komplexe C^{1}-Funktionen des reellen Zeitparameters t sind. Σ und Σ^{\prime} erscheinen solcherart als Gaußsche Zahlenebenen aufgefaßt.
Die Gleichung (1.1) gibt für jeden Augenblick t die Position von Σ^{\prime} an und stellt mit variablem t und $z^{\prime}=$ const in Parameterform die Bahn K dar, die der gangfeste Punkt $z^{\prime} \in \Sigma^{\prime}$ in der Ebene Σ durchläuft.
Durch Ableitung von (1.1) nach t (angedeutet durch einen übergesetzten Punkt) erhält man mit

$$
\begin{equation*}
\dot{z}=\dot{a} z^{\prime}+\dot{b} \tag{1.2}
\end{equation*}
$$

den jeweiligen Geschwindigkeitsvektor \dot{z}, der, represäntiert durch die orientierte Strecke vom Ursprung 0 zum Punkt $\dot{z} \in \Sigma$, die Richtung der Tangente der Bahn K in z anzeigt (Abb. 1).

2. GESCHWINDIGKEITSVERTEILUNG UND MOMENTANPOL

Jener Punkt $z^{\prime}=p^{\prime}$ in Σ^{\prime}, der momentan in Ruhe ist, wird gemä β (1.2) bestimmt durch

$$
\begin{equation*}
0=\dot{a} p^{\prime}+\dot{b} . \tag{2.1}
\end{equation*}
$$

Er heißt der momentane Geschwindigkeitspol oder kurz „Pol". Seine Lage $z=p$ in Σ ist zufolge (1.1) gegeben durch

$$
\begin{equation*}
p=a_{F^{\prime}}+b . \tag{2.2}
\end{equation*}
$$

Durch Differenzenbildung von (1.2) und (2.1) sowie von (1.1) und (2.2) gelangt man zu der wichtigen Relation
(2.3) $\quad \dot{z}=c(z-p)$ mit $\quad c=\dot{a} / a=\varrho \cdot \cdot \mathrm{e}^{\mathrm{i} \sigma}=\varrho(\cos \sigma+\mathrm{i} \sin \sigma)$.

Dies bedeutet in jedem Augenblick, in welchem $a \dot{a} \neq 0$: Die Bahntangenten in allen Punkten $z \neq p$ bilden mit den zugehörigen Polstrahlen $p z$ den gleichen Winkel $\sigma=\arg c$. Die Beträge der Geschwindigkeitsvektoren sind zur Poldistanz $|z-p|$ proportional, wobei der Proportionalitätsfaktor den Wert $\varrho=|c|$ hat. Mit anderen Worten: Bei einem ebenen äquiformen Zwanglauf herrscht in jedem Augenblick die gleiche Geschwindigkeitsverteilung wie bei einer Spiralung um den Momentanpol.
Die Darstellung dieser Ersatzspiralung ergibt sich durch Integration von (2.3) mit $c=$ const und $p=$ const in der Gestalt

$$
\begin{equation*}
z=\mathrm{e}^{c\left(t-t_{0}\right)}\left(a_{0} z^{\prime}+b_{0}\right), \tag{2.4}
\end{equation*}
$$

wobei t_{0} den betrachteten Zeitpunkt bezeichnet und $a_{0}=a\left(t_{0}\right), b_{0}=b\left(t_{0}\right)$ bedeutet. Ihre Bahnkurven $z^{\prime}=$ const bilden unter der Voraussetzung $\sigma \neq 0(\bmod \pi / 2)$ eine Drehschar von logarithmischen Spiralen L mit dem gemeinsamen Wickelpunkt p, welche die ursprünglichen Bahnkurven K berühren. (Abb. 1). Für $\sigma= \pm \pi / 2$ ist die Momentanbewegung eine Drehung um p.

Abb. 1. Momentanspiralung.
Zur graphischen Festlegung des Geschwindigkeitsfeldes genügt die Angabe des Momentanpols p sowie eines beliebigen Hilfspunktes $h \neq p$ mit seinem Geschwindigkeitsvektor \dot{h}. Die konstruktive Ermittlung des Geschwindigkeitsvektors \dot{z} in einem weiteren Punkt z beruht dann auf der ähnlichen Übertragung des Dreiecks $(p, h, h+\dot{h})$ nach $(p, z, z+\dot{z})$, wie es Abb. 1 zeigt.

Die Umkehrbewegung Σ / Σ^{\prime} des ursprünglichen Zwanglaufs $\Sigma^{\prime} / \Sigma(1.1)$ wird beschrieben durch

$$
\begin{equation*}
z^{\prime}=a^{\prime} z+b^{\prime} \quad \text { mit } \quad a^{\prime}=1 / a, \quad b^{\prime}=-b / a \tag{2.5}
\end{equation*}
$$

Die sich deckenden Pole $p \in \Sigma$ und $p^{\prime} \in \Sigma^{\prime}$ vertauschen bloß ihre Rollen, während die Geschwindigkeitsvektoren ihre Orientierung wechseln, was $\sigma^{\prime}=\sigma+\pi(\bmod 2 \pi)$ bedingt. Dies geht auch aus des (2.3) entsprechenden Geschwindigkeitsformel

$$
\begin{equation*}
\dot{z}^{\prime}=c^{\prime}\left(z^{\prime}-p^{\prime}\right) \quad \text { mit } \quad c^{\prime}=\dot{a}^{\prime}\left|a^{\prime}=-\dot{a}\right| a=-c \tag{2.6}
\end{equation*}
$$

hervor.

3. DREIPOLKREIS

Seien nun Σ_{1} und Σ_{2} zwei ähnlich-veränderliche Gangsysteme, die von einem fest gedachten, neutralen Rastsystem Σ aus beobachtet werden. Die simultanen Momentanbewegungen der äquiformen Zwangläufe Σ_{1} / Σ und Σ_{2} / Σ seien durch die Pole p_{1} bzw. p_{2} und die komplexen Spiralkonstanten $c_{1}=\varrho_{1} \exp \left(\mathrm{i} \sigma_{1}\right)$ bzw. $c_{2}=\varrho_{2} \exp \left(\mathrm{i} \sigma_{2}\right)$
festgelegt, wobei $p_{1} \neq p_{2}$ und $c_{1} \neq c_{2}$ angenommen werde. Für die beiden an einer Stelle $z \in \Sigma$ befindlichen Punkte aus Σ_{1} und Σ_{2} werden vom Beobachter in Σ gemä $ß$ (2.3) die im allgemeinen verschiedenen Geschwindigkeitsvektoren

$$
\begin{equation*}
\dot{z}_{\alpha}=c_{\alpha}\left(z-p_{\alpha}\right), \quad \alpha=1,2 \tag{3.1}
\end{equation*}
$$

gemessen. ${ }^{1}$)
Die Relativbewegung Σ_{2} / Σ_{1} ist naturgemä β ebenfalls eine äquiforme und besitzt im Augenblick einen gewissen Relativpol, der, als Element von Σ_{2} aufgefaßt, für einen Beobachter in Σ_{1} in Ruhe erscheint. Dieser momentane Relativpol gilt - im Einklang mit der Schlußbemerkung in Abschnitt 2 - demnach auch für die Umkehrbewegung Σ_{1} / Σ_{2} und ist für den Beobachter in Σ durch gleiche Geschwindigkeitsvektoren $\dot{z}_{1}=\dot{z}_{2}$ gekennzeichnet. Für seine Lage $z=p_{12}=p_{21}$ in Σ hat man daher auf Grund von (3.1) die Formel

$$
\begin{equation*}
p_{12}=p_{21}=\frac{c_{1} p_{1}-c_{2} p_{2}}{c_{1}-c_{2}} \tag{3.2}
\end{equation*}
$$

Fragt man, in Abschwächung der Bedingung $\dot{z}_{1}=\dot{z}_{2}$, nach jenen Punkten z in Σ, für welche bloß $\dot{z}_{1} \| \dot{z}_{2}$ gilt, so verlangt diese Forderung die Realität des Quotienten $\dot{z}_{1} / \dot{z}_{2}$. Mit Benützung der konjugiert-komplexen Zahlen \bar{z}, \bar{c} und \bar{p} gelangt man so über $\dot{z}_{1}: \dot{\bar{z}}_{2}=\dot{\bar{z}}_{1}: \dot{\bar{z}}_{2}$ unter Berufung auf (3.1) zu

$$
\begin{equation*}
c_{1} \bar{c}_{2}\left(z-p_{1}\right)\left(\bar{z}-\bar{p}_{2}\right)=c_{2} \bar{c}_{1}\left(z-p_{2}\right)\left(\bar{z}-\bar{p}_{1}\right) \tag{3.3}
\end{equation*}
$$

Damit hat man - in isotropen Koordinaten $z=x+\mathrm{i} y, \bar{z}=x-\mathrm{i} y$ - die Gleichung eines Kreises Q_{12}, sofern $c_{1} \bar{c}_{2} \neq \bar{c}_{1} c_{2}$, also $\sigma_{1} \neq \sigma_{2}(\bmod \pi)$; andernfalls würde sich $Q_{12} \mathrm{zu}$ einer Geraden abflachen. Dieser Kreis $Q_{12}\left(=Q_{21}\right)$ geht durch die drei Pole p_{1}, p_{2} und p_{12} und mag daher als ,,Dreipolkreis" angesprochen werden. Er stellt, wie schon M. Pišl [4] hervorgehoben hat, das äquiforme Analogon der Aronhold-Kennedyschen Geraden in der euklidischen Kinematik dar.

Eine andere Abschwächung der Bedingung $\dot{z}_{1}=\dot{z}_{2}$ besteht in der Frage nach allen Punkten $z \in \Sigma$, wo die Geschwindigkeiten bloß gleiche Beträge $\left|\dot{z}_{1}\right|=\left|\dot{z}_{2}\right|$ haben. Über $\dot{z}_{1} \dot{\bar{z}}_{1}=\dot{z}_{2} \dot{\bar{z}}_{2}$ gelangt man auf Grund von (3.1) zu

$$
\begin{equation*}
c_{1} \bar{c}_{1}\left(z-p_{1}\right)\left(\bar{z}-\bar{p}_{1}\right)=c_{2} \bar{c}_{2}\left(z-p_{2}\right)\left(\bar{z}-\bar{p}_{2}\right) \tag{3.4}
\end{equation*}
$$

Auch dies ist die isotrope Gleichung eines Kreises $R_{12}\left(=R_{21}\right)$, sofern $c_{1} \bar{c}_{1} \neq c_{2} \bar{c}_{2}$, also $\varrho_{1} \neq \varrho_{2}$; anderfalls würde R_{12} zu einer Geraden (der Symmetrale von p_{1} und p_{2}) entarten. Dieser Kreis enthält naturgemäß ebenfalls den Relativpol p_{12}. Die Pole p_{1} und p_{2} liegen hingegen invers bezüglich R_{12}. Zum Nachweis bilde man die Polare P_{1} von p_{1} bezüglich R_{12}; sie hat die Gleichung

$$
\begin{equation*}
\bar{d} \cdot\left(z-p_{2}\right)+d \cdot\left(\bar{z}-\bar{p}_{2}\right)=0 \text { mit } d=p_{2}-p_{1} \tag{3.5}
\end{equation*}
$$

[^0]P_{1} enthält mithin den Pol p_{2} und ist normal zur Geraden $p_{1} p_{2}$ (Abb. 2), womit die Behauptung erwiesen ist. Überdies folgt daraus, daß der Dreipolkreis Q_{12} ein Orthogonalkreis von R_{12} ist. Schreibt man die Bedingung (3.4) in der Form
\[

$$
\begin{equation*}
\left|z-p_{1}\right|:\left|z-p_{2}\right|=\varrho_{2}: \varrho_{1}, \tag{3.6}
\end{equation*}
$$

\]

so sieht man, daß R_{12} als Apollonischer Kreis des Punktepaares p_{1}, p_{2} aufgefaßt werden kann.

Abb. 2. Dreipolkreis.

Die beiden Kreise Q_{12} und R_{12} bieten auch einen Schlüssel zur konstruktiven Ermittlung des Relativpols p_{12}. Der momentane Bewegungszustand des Zwanglaufs $\Sigma_{1} \mid \Sigma$ sei gemä Abb . 1 festgelegt durch den Pol p_{1} und den Geschwindigkeitsvektor h_{1} in einem Hilfspunkt h_{1}, der zweckmäßig in p_{2} angenommen wird (Abb. 2). Ebenso sei die Momentanbewegung von Σ_{2} / Σ gegeben durch den Pol p_{2} und den Geschwindigkeitsvektor \dot{h}_{2} des in p_{1} gewählten Hilfspunkts h_{2}. Faßt man dann den Schnittpunkt s der Bahntangenten von h_{1} und h_{2} ins Auge, und sucht man mittels der in Abschnitt 2 vermerkten Regel seine Geschwindigkeitsvektoren \dot{s}_{1} und \dot{s}_{2} auf, so erkennt man aus einfachen Winkelbeziehungen in Abb. 2, daß dieselben gleichgerichtet sind. Damit ist s als Mitglied des Dreipolkreises Q_{12} charakterisiert, der nun als Umkreis des Dreiecks $p_{1} p_{2} s$ gezeichnet werden kann. Weitere Punkte z mit der Eigenschaft $\dot{z}_{1} \| \dot{z}_{2}$ könnte man erhalten, wenn man die Polstrahlen $p_{1} s$ und $p_{2} s$ um gleiche Winkel verdreht und mieinander schneidet. Hierbei bemerkt man überdies: Die (zusammenfallenden) Bahntangenten aller auf dem Dreipolkreis Q_{12} liegenden Punkte von Σ_{1} und Σ_{2} gehen allesamt durch den Punkt $s \in Q_{12 .}{ }^{2}$) Für

[^1]diesen ,,Zielpunkt" s, besser s_{12}, gelten die Formeln
\[

$$
\begin{equation*}
\left(c_{1} \bar{c}_{2}-\bar{c}_{1} c_{2}\right) \cdot s_{12}=\left(c_{1}-\bar{c}_{1}\right) c_{2} p_{2}-\left(c_{2}-\bar{c}_{2}\right) c_{1} p_{1} \tag{3.7}
\end{equation*}
$$

\]

oder

$$
\begin{equation*}
s_{12} \cdot \sin \left(\sigma_{1}-\sigma_{2}\right)=p_{2} \cdot \exp \left(\mathrm{i} \sigma_{2}\right) \sin \sigma_{1}-p_{1} \cdot \exp \left(\mathrm{i} \sigma_{1}\right) \sin \sigma_{2} \tag{3.8}
\end{equation*}
$$

Den Apollonischen Kreis \boldsymbol{R}_{12} ermittelt man am besten mithilfe der Endpunkte seines auf der Verbindungsgeraden von p_{1} und p_{2} liegenden Durchmessers, welche zufolge (3.6) dir Strecke $p_{1} p_{2}$ innerlich und äußerlich in dem bekannten Verhältnis $\varrho_{2}: \varrho_{1}=\left|\dot{h}_{2}\right|:\left|\dot{h}_{1}\right|$ teilen (Abb. 2). Von den beiden Schnittpunkten der (orthogonalen) Kreise Q_{12} und R_{12} ist einer der gesuchte Relativpol p_{12}; dort ist $\dot{z}_{1}=\dot{z}_{2}$. Im anderen, q_{12}, ist $\dot{z}_{1}=-\dot{z}_{2}$; die Entscheidung ist in jedem Fall unschwer zu treffen (Abb. 2).

4. DREI GANGSYSTEME

Im Hinblick darauf, daß das bislang verwendete Bezugsystem Σ blo β fest zu denken war, erscheint es gegenüber den beweglichen $\operatorname{Systemen} \Sigma_{1}$ und Σ_{2} nur dadurch ausgezeichnet, daß es die Rechnung erleichert und einfache Formeln liefert. Die Ergebnisse lassen sich demnach in allgemeinerer Form (und mit modifizierten Bezeichnungen) zusammenfassen in

Satz 1. Irgenddrei komplanare und zwangläufig gekoppelte ähnlich-veränderliche Systeme Σ_{1}, Σ_{2} und Σ_{3} geben im allgemeinen in jedem Augenblick Anla β zu drei verschiedenen Relativpolen $p_{\alpha \beta}=p_{\beta \alpha}(\alpha, \beta \in\{1,2,3\}, \alpha \neq \beta)$ und einem sie verbindenden Dreipolkreis Q_{123}. Für einen Beobachter in einem beliebigen der drei Systeme weisen die Geschwindigkeitsvektoren der Punkte von Q_{123}, gleichgültig $z u$ welchem der beiden anderen Systeme sie gezählt werden, stets zum selben Zielpunkt $s_{123} \in Q_{123}$ hin.

Unter der Annahme, daß die Lagenfolgen der drei beweglichen Ebenen bezüglich eines neutralen, fest gedachten Systems Σ nach dem Vorbild (1.1) durch Gleichungen

$$
\begin{equation*}
z=a_{\alpha} z_{\alpha}+b_{\alpha}(\alpha=1,2,3) \text { mit } a_{\alpha}=a_{\alpha}(t), \quad b_{\alpha}=b_{\alpha}(t) \tag{4.1}
\end{equation*}
$$

gegeben sind, sollen die Formeln für die Relativpole $p_{\alpha \beta}$ und den Dreipolkreis Q_{123} hergeleitet werden. Für den von Σ aus beobachteten Geschwindigkeitsvektor \dot{z}_{α} eines gangfesten Punktes $z_{\alpha} \in \Sigma_{\alpha}$ findet man nach dem Vorgang in Abschnitt 2 die grundlegende Beziehung

$$
\begin{equation*}
\dot{z}_{\dot{\alpha}}=c_{\alpha}\left(z-p_{\alpha}\right) \text { mit } \quad c_{\alpha}=\dot{a}_{\alpha} / a_{\alpha}=\varrho_{\alpha} \cdot \exp \left(\mathrm{i} \sigma_{\alpha}\right), \tag{4.2}
\end{equation*}
$$

wobei

$$
\begin{equation*}
p_{\alpha}=b_{\alpha}-\left(b_{\alpha} a_{\alpha} \mid \dot{a}_{\alpha}\right) \tag{4.3}
\end{equation*}
$$

die Lage des Momentanpols von Σ_{α} / Σ bezeichnet.

Für den Relativpol $p_{\alpha \beta}=p_{\beta \alpha}$ von $\Sigma_{\alpha} \mid \Sigma_{\beta}$ und $\Sigma_{\beta} / \Sigma_{\alpha}$ muß $\dot{z}_{\alpha}=\dot{z}_{\beta}$ sein. Seine Lage in Σ ist daher zufolge (4.2) bestimmt durch

$$
\begin{equation*}
p_{\alpha \beta}=\frac{c_{\alpha} p_{\alpha}-c_{\beta} p_{\beta}}{c_{\alpha}-c_{\beta}} \tag{4.4}
\end{equation*}
$$

Für die Punkte des Dreipolkreises Q_{123} (mit ungeordnetem Indextripel) müssen gemäß Satz 1 etwa die von Σ_{1} aus festzustellenden Relativgeschwindigkeiten $\dot{z}_{2}-\dot{z}_{1}$ und $\dot{z}_{3}-\dot{z}_{1}$ gleichgerichtet sein. Dies führt über die Realitätsbedingung

$$
\begin{equation*}
\left(\dot{z}_{2}-\dot{z}_{1}\right):\left(\dot{z}_{3}-\dot{z}_{1}\right)=\left(\dot{\bar{z}}_{2}-\dot{\bar{z}}_{1}\right):\left(\dot{\bar{z}}_{3}-\dot{\bar{z}}_{1}\right) \tag{4.5}
\end{equation*}
$$

mit Beachtung von (4.2) auf die Gleichung

$$
\begin{align*}
& c_{2} \bar{c}_{3}\left(z-p_{2}\right)\left(\bar{z}-\bar{p}_{3}\right)-c_{1} \bar{c}_{3}\left(z-p_{1}\right)\left(\bar{z}-\bar{p}_{3}\right)-c_{2} \bar{c}_{1}\left(z-p_{2}\right)\left(\bar{z}-\bar{p}_{1}\right)= \tag{4.6}\\
= & c_{3} \bar{c}_{2}\left(z-p_{3}\right)\left(\bar{z}-\bar{p}_{2}\right)-c_{3} \bar{c}_{1}\left(z-p_{3}\right)\left(\bar{z}-\bar{p}_{1}\right)-c_{1} \bar{c}_{2}\left(z-p_{1}\right)\left(\bar{z}-\bar{p}_{2}\right) .
\end{align*}
$$

Nach Auswertung gelangt man so für den Dreipolkreis Q_{123} zur isotropen Gleichung

$$
\begin{equation*}
A z \bar{z}+\bar{B} z-B \bar{z}+C=0 \tag{4.7}
\end{equation*}
$$

mit

$$
\begin{aligned}
A & =\bar{c}_{1}\left(c_{2}-c_{3}\right)+\bar{c}_{2}\left(c_{3}-c_{1}\right)+\bar{c}_{3}\left(c_{1}-c_{2}\right)=-\bar{A}, \\
B & =\bar{c}_{1}\left(c_{2} p_{2}-c_{3} p_{3}\right)+\bar{c}_{2}\left(c_{3} p_{3}-c_{1} p_{1}\right)+\bar{c}_{3}\left(c_{1} p_{1}-c_{2} p_{2}\right), \\
C & =\bar{c}_{1} \bar{p}_{1}\left(c_{2} p_{2}-c_{3} p_{3}\right)+\bar{c}_{2} \bar{p}_{2}\left(c_{3} p_{3}-c_{1} p_{1}\right)+\bar{c}_{3} \bar{p}_{3}\left(c_{1} p_{1}-c_{2} p_{2}\right)=-\bar{C} .
\end{aligned}
$$

Der Mittelpunkt $m_{123} \in \Sigma$ und der Radius r_{123} von Q_{123} ergeben sich durch Vergleich $\operatorname{von}(4.7) \operatorname{mit}(z-m)(\bar{z}-\bar{m})=r^{2}$ aus

$$
\begin{equation*}
m_{123}=B\left|A, \quad r_{123}^{2}=(B \bar{B}-\bar{A} C) / A \bar{A}=\left(|B|^{2}+A C\right) /|A|^{2} .\right. \tag{4.8}
\end{equation*}
$$

5. VIERERPOL

Tritt zu der Anordnung in Abschnitt 3 noch ein drittes Gangsystem Σ_{3} hinzu, dessen momentaner Bewegungszustand durch den $\operatorname{Pol} p_{3}$ und die Spiralkonstante $c_{3}=\varrho_{3} \cdot \exp \left(\mathrm{i} \sigma_{3}\right)$ gekennzeichnet ist, so hat man es mit insgesamt sechs Polen $p_{1}, p_{2}, p_{3}, p_{12}, p_{13}, p_{23}$ zu tun. Sie verteilen sich zu je dreien auf vier Dreipolkreise Q_{12}, Q_{13}, Q_{23} und Q_{123}, deren letzter durch (4.7) gegeben ist.

Die Kreise Q_{12} und Q_{13} haben neben dem Pol p_{1} noch einen Restschnittpunkt v gemeinsam, für dessen Geschwindigkeitsvektoren $\dot{v}_{1} \| \dot{v}_{2}$ und $\dot{v}_{1} \| \dot{v}_{3}$ gilt. Infolgedessen, nämlich wegen $\dot{v}_{2} \| \dot{v}_{3}$, liegt v auch auf dem Kreis Q_{23}, und aus Gründen der Gleichberechtigung auch auf Q_{123} (Abb. 3). Weil der Punkt v also allen vier Dreipolkreisen angehört, mag er kurz ,,Viererpol" heißen. Seine gemeinsame Bahntangente - gleichgültig zu welchem der drei Gangsysteme er gezählt wird - geht
durch die drei Zielpunkte $s_{12} \in Q_{12}, s_{13} \in Q_{13}$ und $s_{23} \in Q_{23}$, die nach dem Muster (3.7) oder (3.8) zu finden sind.

Zwecks Ermittlung des Viererpoles $z=v$ in Σ ist der neben $z=p_{1}$ vorhandene Restschnittpunkt der Kreise Q_{12} (3.3) und Q_{13} zu bestimmen. Unter Verwendung der Abkürzungen

$$
\begin{equation*}
z-p_{1}=\zeta, \quad c_{\alpha} / \bar{c}_{\alpha}=\exp \left(2 \mathrm{i} \sigma_{\alpha}\right)=\varepsilon_{\alpha}, \quad p_{\beta}-p_{\alpha}=d_{\alpha \beta}=-d_{\beta \alpha} \tag{5.1}
\end{equation*}
$$

Abb. 3. Viererpol.
läuft diese Aufgabe auf die Lösung des Gleichungspaares

$$
\begin{align*}
& \left(\varepsilon_{2}-\varepsilon_{1}\right) \zeta \bar{\zeta}+\varepsilon_{1} \bar{d}_{12} \cdot \zeta-\varepsilon_{2} d_{12} \cdot \bar{\zeta}=0 \tag{5.2}\\
& \left(\varepsilon_{3}-\varepsilon_{1}\right) \zeta \bar{\zeta}+\varepsilon_{1} \bar{d}_{13} \cdot \zeta-\varepsilon_{3} d_{13} \cdot \bar{\zeta}=0
\end{align*}
$$

hinaus. Von

$$
\begin{gather*}
\zeta \bar{\zeta}: \zeta: \bar{\zeta}=\varepsilon_{1}\left(\varepsilon_{2} d_{12} \bar{d}_{13}-\varepsilon_{3} d_{13} \bar{d}_{12}\right):(\ldots): \tag{5.3}\\
:-\varepsilon_{1}\left(\varepsilon_{1} \bar{d}_{23}+\varepsilon_{2} \bar{d}_{31}+\varepsilon_{3} d_{12}\right)
\end{gather*}
$$

gelangt man so zunächst zu einem Ausdruck für $\zeta=\zeta \bar{\zeta}: \bar{\zeta}$ und anschließend über $v=p_{1}+\zeta \mathrm{zu}$

$$
\begin{equation*}
v=\frac{\varepsilon_{1} p_{1} \bar{d}_{23}+\varepsilon_{2} p_{2} \bar{d}_{31}+\varepsilon_{3} p_{3} \bar{d}_{12}}{\varepsilon_{1} \bar{d}_{23}+\varepsilon_{2} \bar{d}_{31}+\varepsilon_{3} \bar{d}_{12}} . \tag{5.4}
\end{equation*}
$$

Das Hauptresultat sei gleich in verallgemeinerter Fassung (und mit entsprechend modifizierten Bezeichnungen) festgehalten in

Satz 2. Irgendvier komplanare und zwangläufig gekoppelte ähnlich-veränderliche Systeme $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}$ geben im allgemeinen in jedem Augeblick Anla β zu sechs verschiedenen Relativpolen $p_{\alpha \beta}=p_{\beta \alpha}$, die sich zu je dreien auf vier Dreipolkreise
$Q_{\alpha \beta \gamma}(\alpha, \beta, \gamma \in\{1,2,3,4\}, \alpha \neq \beta \neq \gamma \neq \alpha)$ verteilen. Diese vier Polkreise haben einen Punkt, den Viererpol v_{1234}, gemeinsam. Die dort befindlichen Systempunkte rufen in den anderen Systemen insgesamt zwölf Bahntangenten hervor, die sämtlich in einer Geraden zusammenfallen, welche alle vier Zielpunkte $s_{\alpha \beta \gamma} \in Q_{\alpha \beta \gamma}$ enthält

Alle bisher aufgestellen Formeln wurden anhand der Daten der graphisch entwickelten Figuren numerisch überprüft

6. POLPLÅNE

Auf die Herleitung einer verallgemeinerten Formel für den Viererpol v_{1234} aus Satz 2 unter der Annahme eines neutralen Bezugsystems Σ - wie dies mit (4.6) für den Dreipolkreis Q_{123} geschehen ist - wurde im Hinblick auf den beträchtlichen Aufwand verzichtet. Offen bleibt daher auch die Frage, ob sich bei fünf vorhandenen Systemen etwas über die Verteilung der dann auftretenden fünf Viererpole aussagen läßt.

Um eine Vorstellung zu gewinnen, wurde zu den drei in Abb .3 betrachteten Systemen $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ (mit den dort ersichtlichen Daten) noch ein viertes System Σ_{4}

Abb. 4. Polplan für fünf Systeme.
hinzugefügt $\left(\varrho_{4}=1, \sigma_{4}=225^{\circ}\right)$. Die dann entstehende Konfiguration ist in Abb. 4 wiedergegeben, wobei die Beschriftung darauf beruht, daß das Bezugsystem Σ als fünftes System Σ_{5} fungiert. Dieser ,,Polplan" enthält 10 Relativpole $p_{\alpha \beta}, 10$ Dreipolkreise $Q_{\alpha \beta \gamma}$ und 5 Viererpole $v_{\alpha \beta \gamma \delta}$. Eingetragen sind auch die 10 Zielpunkte $s_{\alpha \beta \gamma} \in Q_{\alpha \beta \gamma}$. Sie liegen jeweils zu viert zusammen mit einem Viererpol auf einer von insgesamt 5 Geraden und bilden solcherart die Ecken eines vollständigen Fünfseits.

Diese durch Satz 2 bedingten Beziehungen sind auch bei $n>5$ komplanaren ähnlich-veränderlichen Systemen $\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{n}$ maßgebend. Der in jedem Augenblick vorhandene Polplan umfaßt $\binom{n}{2}$ Relativpole $p_{\alpha \beta}$; die Pole $p_{\alpha \beta}, p_{\alpha \gamma}, p_{\beta \gamma}$ bestimmen einen Dreipolkreis $Q_{\alpha \beta \gamma}$ von insgesamt $\binom{n}{3}$ solchen. Die vier Polkreise $Q_{\alpha \beta \gamma}, Q_{\alpha \beta \delta}$, $Q_{\alpha \gamma \delta \delta}, Q_{\beta \gamma \delta}$ haben den Viererpol $v_{\alpha \beta \gamma \delta}$ von insgesamt $\binom{n}{4}$ solchen gemeinsam. Jeder Dreipolkreis $Q_{\alpha \beta \gamma}$ enthält einen Zielpunkt $s_{\alpha \beta \gamma}$; dorthin zielen, für einen Beobachter in Σ_{γ}, die durch die Bewegungen $\Sigma_{\alpha} / \Sigma_{\gamma}$ und $\Sigma_{\beta} / \Sigma_{\gamma}$ bewirkten Fortschreitrichtungen sämtlicher Punkte von $Q_{\alpha \beta \gamma}$, je nachdem ob man dieselben zu Σ_{α} oder Σ_{β} zählt. Weitere gleichartige Deutungen von $s_{\alpha \beta \gamma}$ erhält man durch Permutation von α, β, γ (Satz 1). Je vier Zielpunkte $s_{\alpha \beta \gamma}, s_{\alpha \beta \delta}, s_{\alpha \gamma \delta}, s_{\beta \gamma \delta}$ liegen zusammen mit dem Viererpol $v_{\alpha \beta \gamma \delta}$ auf einer Geraden. Je $n-3 \operatorname{dieser}\binom{n}{4}$ Geraden haben einen Zielpunkt gemeinsam.

Literatur

[1] O. Bottema, B. Roth: Theoretical Kinematics. Amsterdam-New York-Oxford 1979.
[2] L. Burmester: Kinematisch-geometrische Untersuchungen der Bewegung ähnlich-veränderlicher ebener Systeme. Z. Math. Phys. 19 (1874), 154-169. - Lehrbuch der Kinematik. Leipzig 1888.
[3] K. Drábek, J. Chudý, Z. Pirko: Beiträge zur \mathscr{E}-Kinematik in der Ebene; \mathscr{E}-Rotationen mit geradliniger, kreis- und spiralförmiger Mappe. Acta Polytechn. (Práce ČVUT v Praze) 10 (IV/1, 1981), 5-22.
[4] M. Pišl: Eine Verallgemeinerung der Aronhold-Kennedy-Gerade. Kinematik-Tagung Oberwolfach, 26.-30. 4. 1982.

Souhrn

PÓLOVÁ KONFIGURACE V EKVIFORMNÍM POHYBU

Walter Wunderlich
Obecně je relativní okamžitý pohyb dvou komplanárních podobně proměnlivých systémủ $\Sigma_{\alpha}, \Sigma_{\beta}$ spirálním pohybem kolem pólu $p_{\alpha \beta}=p_{\beta \alpha}$ (obr. 1). Tři póly $p_{\alpha \beta}, p_{\alpha \gamma}, p_{\beta \gamma}$ vystupující při trech systémech $\Sigma_{\alpha}, \Sigma_{\beta}, \Sigma_{\gamma}$ určují "kružnici tří pólư" $Q_{\alpha \beta \gamma}$, její̌̌ body mají tuto vlastnost: Pro pozorovatele \mathbf{v} jednom ze tří systémủ jsou tečny trajektorií bodu této kružnice téhož směru
bez ohledu na to, zda jej počítáme k jednomu nebo druhému systému; mají směr do tzv. „cílového bodu" $s_{\alpha \beta \gamma} \in Q_{\alpha \beta \gamma}$ (obr. 2). Čtyři systémy $\Sigma_{\alpha}, \Sigma_{\beta}, \Sigma_{\gamma}, \Sigma_{\delta}$ dávají čtyři kružnice pólủ, které mají společný bod $v_{\alpha \beta \gamma \delta}$ tzv. „čtyřpól". Čty̌̌i příslušné cilové body leží na přímce procházející čtyřpólem (obr. 3). Tyto vztahy se vyskytují také při pólovém plánu pro $n>4$ (obr. 4).

Резюме

ПОЛЮСНАЯ КОНФИГУРАЦИЯ В ЭКВИФОРМНОМ ДВИЖЕНИИ

Walter Wunderlich

В общем случае относительное мгновенное движение двух компланарных меняющихся подобным образом систем $\Sigma_{\alpha}, \Sigma_{\beta}$ представляет собой винтообразное движение вокруг полюса $p_{\alpha \beta}=p_{\beta \alpha}$ (рис. 1). Три полюса $p_{\alpha \beta}, p_{\alpha \gamma}, p_{\beta \gamma}$, появляющиеся в случае трех систем $\Sigma_{\alpha}, \Sigma_{\beta}, \Sigma_{\gamma}$, определяют „окружность трех полюсов" $Q_{\alpha \beta \gamma}$, точки которой обладают следующим свойством: Для наблюдателя в одной из этих трех систем касательные траекторий точки этой окружности имеют одно и то же направление независимо от того, в какой системе она рассматривается, и все направлены в так называемую, „целевую точку" $s_{\alpha \beta \gamma} \in Q_{\alpha \beta \gamma}$ (рис. 2). Четыре системы Σ_{α}, $\Sigma_{\beta}, \Sigma_{\gamma}, \Sigma_{\delta}$ порождают четыре окружности полюсов, которые обладают общей точкой $v_{\alpha \beta \gamma \delta}$, так называемым ,,четыреполюсом". Соответствующие четыре целевые точки лежат на прямой проходящей через четыреполюс. Эти соотношения имеются также для большего числа систем.

Anschrift des Verfassers: Emer. Prof. Dr. Walter Wunderlich, Institut für Geometrie, Technische Universität, Wiedner Hauptstraße 8-10, A-1040 Wien, Österreich.

[^0]: ${ }^{1}$ Die Bezeichnung \dot{z}_{α} soll ausnahmsweise nicht $\mathrm{d} z_{\alpha} / \mathrm{d} t$ bedeuten, sondern abkürzend für $(\dot{z})_{\alpha}$ oder $\dot{\dot{z}}_{(\alpha)}$ stehen.

[^1]: ${ }^{2}$) Dort wird Q_{12} von \dot{s}_{1} und \dot{s}_{2} berührt.

