Eine kennzeichnende Eigenschaft der D-Linien von Quadriken.

Von

Walter Wunderlich, Wien.

(Eingelangt am 27. August 1950.)

1.


Sei $k$ eine $D$-Kurve der Fläche $\Phi$, $T$ ein laufender Kurvenpunkt, $t$ die zugehörige Tangente, $\tau$ die Schmiegebene und $\Sigma$ die Schmiekgugel. $\Sigma$ schneidet $\Phi$ nach einer Kurve $h$, die in $T$ einen Doppelpunkt aufweist und mit $k$ vier vereinigte Punkte gemein hat; $k$ durchsetzt mithin den einen Zweig von $h$ einfach, den anderen oszilierend. Jeder durch $t$ gelegte ebene Schnitt hat mit $h$ mindestens $2 + 1 = 3$ zusammengerückte Punkte gemein, sein Krümmungskreis liegt daher auf der Trägerkugel $\Sigma$ von $h$, die damit als die zum Linienelement ($T, t$) gehörige Meusnier-Kugel zu erkennen ist. Unter den durch $t$ legbaren Ebenen ist nun die Schmiegebene $\tau$ von $h$ ausgezeichnet: Alle das Element ($T, t, \tau$) oder das entsprechende Element des zweiten Zweiges von $h$ enthaltenden Flächenkurven — und nur diese! — treffen $h$ in (wenigstens) $3 + 1 = 4$ zusammenfallenden Punkten und besitzen somit $\Sigma$ als Schmiekgugel. Für jedes Linienelement ($T, t$) der Fläche $\Phi$


ist demnach über die zugehörige Meusnierkugel $\Sigma$ und deren Schnittlinie $\Sigma \Phi = h$ die Schmiegebene $\tau$ eindeutig mitbestimmt. Die Ermittlung der D-Kurven von $\Phi$ beruht danach auf der Aneinanderreihung von Elementen ($T, t, \tau$) aus einem Vorrat von $\omega^3$ Exemplaren, erfordert also die Integration einer gewöhnlichen Differentialgleichung 2. Ordnung. Auf einer (nichtphärischen) Fläche existieren mithin $\omega^3$ D-Kurven; durch jeden allgemeinen Punkt gehen $\omega^4$ davon.

Aus der Tatsache, daß der Krümmungskreis $\Sigma \tau$ von $k$ mit $h$ und daher auch mit $\Phi$ vier zusammengerückte Punkte gemein hat, fließt zwanglos eine zweite Kennzeichnung der D-Linien: Es sind jene Flächenkurven, deren Krümmungskreise die Fläche hyperoszilieren.

2. Schon Darboux selbst hat a. a. O.1 den Fall einer Grundfläche 2. Ordnung betrachtet und deren D-Linien mit Hilfe elliptischer Koordinaten durch elliptische Integrale dargestellt. Sein Ansatz wurde später von A. Pell ausgeführt, der auch einige interessante geometrische Eigenschaften dieser speziellen Kurven entdeckte.2 Einen begrenzten Zugang zu den D-Linien der Quadriken eröffnen aber auch schon die einfachen, in Nr. 1 dargelegten Vorstellungen; diesen Weg beschritt vor kurzem der Verfasser, wobei sich neben neuen Eigenschaften vor allem eine tiefere Einsicht und verschiedene merkwürdige Zusammenhänge ergaben.3

Die benützten Hilfskurven $h$, die aus der Grundfläche $\Phi$ von ihren Berührungskugeln $\Sigma$ ausgeschnitten werden, sind nämlich im Falle einer Quadrik im allgemeinen rationale Kurven 4. Ordnung mit vier gemeinsamen Fixpunkten $U_i$ ($i = 1, \ldots, 4$), jenen Punkten von $\Phi$, die auf dem absoluten Kugelkreis liegen. Jede solche Quartär wird aus ihrem Doppelpunkt $T$ durch einen Kegel 2. Ordnung $\Lambda$ projiziert, der die beiden Doppelpunktstangenten $t$ enthält und längs derselben von den zugehörigen Schmiegebene $\tau$ berührt wird; $h$ hat ebenfalls die Fixpunkte $U_i$ gemein, so daß ihre Fernkegelschnitte lediglich ein Büschel erfüllen. Die Tangentenfläche einer $D$-Kurve $k$ besteht nun aus Streifenelementen ($t, \tau$) und wird also längs jeder Erzeugenden von einem Kegel $\Lambda$ tangiert: Dementsprechend wird ihre Fernkurve

---

in jedem Punkte von einer der Kegelschnitte des Bäschels $U_1 U_2 U_3 U_4$ berührt und muß daher notwendig mit einem dieser Kegelschnitte c zusammenfallen. Umgekehrt ist auch jede Flächenkurve, deren Tangenten einen festen Bäschelkegelschnitt c treffen, eine D-Linie, weil sie aus Elementen $(T, t, r)$ besteht.

Damit sind die D-Kurven der Quadriken zunächst einmal als affine Böschungslinien gekennzeichnet und es gilt.

Satz 1: Die D-Kurven einer Fläche 2. Ordnung $\Phi$ sind identisch mit jenen affinen Böschungslinien von $\Phi$, deren Tangentenrichtkegel konzylisch mit $\Phi$ sind.\(^4\)

Durch Spezialisierung auf Drehquadriken ergibt sich in Übereinstimmung mit einer Bemerkung von W. Blaschke, daß deren D-Kurven mit ihren (vielfach betrachteten) gewöhnlichen Böschungslinien für lotrechte Achsenlage zusammenfallen.\(^5\)

Durch Satz 1 werden die D-Kurven der Quadriken einer konstruktiven Behandlung zugänglich gemacht, die auf der Anwendung der vom Verfasser vor einiger Zeit entwickelten projektiven Theorie der Böschungslinien auf Flächen 2. Ordnung beruht.\(^6\) Dies findet sich in der unter Fußnote 3 genannten Arbeit näher ausgeführt.

3.

Wir wenden uns nun der Betrachtung der Schmiekgugelmitten zu, wobei wir uns vorübergehend der Rechnung bedienen wollen. Sei bei Beschränkung auf Mittelpunktflächen

$$a x^2 + \beta y^2 + \gamma z^2 = \delta$$

(1)
die Gleichung der Grundquadrik $\Phi$ in Normalkoordinaten $x, y, z$, so wird der konzylische Tangentenrichtkegel einer D-Linie etwa durch

$$(\alpha - \lambda) x^2 + (\beta - \lambda) y^2 + (\gamma - \lambda) z^2 = 0$$

(2)

dargestellt. Der parallele, von einem Flächenpunkt $T(x_0, y_0, z_0)$ austrahende Kegel $\Delta$ hat dann die Gleichung

$$(a - \lambda) (x - x_0)^2 + (\beta - \lambda) (y - y_0)^2 + (\gamma - \lambda) (z - z_0)^2 = 0,$$

(3)
den und Subtraktion von (1) liefert die zu $T$ gehörige, im Bäschel $\Phi \Delta$ enthaltene Schmiekgugel $\Sigma$ mit

$$\lambda (x^2 + y^2 + z^2) + 2 (1 - \alpha) x x_0 + 2 (1 - \beta) y y_0 + 2 (1 - \gamma) z z_0 = 2.$$  

(4)

Hieraus lesen wir nun unmittelbar die Koordinaten des zu $T$ gehörigen Schmiekgugelzentrums $T^*$ ab:

$$x_0^* = (1 - \frac{\alpha}{\lambda}) x_0, \quad y_0^* = (1 - \frac{\beta}{\lambda}) y_0, \quad z_0^* = (1 - \frac{\gamma}{\lambda}) z_0.$$  

(5)

Der Übergang von $T$ zu $T^*$ wird demnach durch eine gewisse Affinität bewerkstelligt, welche die Hauptebenen der Quadrik festläßt. Ein geeigneter Grenzübergang dehnt die Gültigkeit dieser Beziehung auch auf die Flächen ohne Mittelpunkt aus, so daß wir allgemein aus sprechen können den

Satz 2: Bei jeder allgemeinen D-Linie einer Quadrik hängen die Punkte mit den zugehörigen Schmiekgugelmitteln durch eine Raumaffinität zusammen, welche die Hauptausschneidebenen der Fläche festläuft.

Die von den Schmiekgugelmitteln erfüllte Polare (Planaroeule) $k^*$ einer solchen D-Linie $k$ ist danach gleichfalls affine Böschungslinie einer Quadrik $\Phi^*$, jedoch im allgemeinen selbst keine D-Linie mehr, wie man sich leicht überzeugt. Wohlt trifft dies hingegen bei den Drehquadriken zu, wie auf Grund der Bemerkung im Anschluß an Satz 1 klar ist.

4. Der Hauptzweck der vorliegenden Note ist es nun, zu zeigen, daß der gefundene affine Zusammenhang kennzeichnend ist, d. h. daß es außer den D-Linien der Quadriken keine anderen Raumkurven gibt, deren Punkte und Schmiekgugelzentren durch eine Affinität gekoppelt sind.

Sei also k eine Raumkurve mit der genannten Eigenschaft, $k^*$ ihre Polare und $y$ die laut Voraussetzung bestehende Affinität, welche den Punkten $T, $ Tangenten $t$ und Schmiegebenen $r$ von $k$ die entsprechenden Elemente $T^*, r^*$ und $y^*$ von $k^*$ zuordnet. Die von den Streifenelementen $(t, r)$ und $(t^*, r^*)$ in der Fernebene erzeugten un- 

- eigentlichen Lienelemente $(T^*, t^*)$ und $(T^*, t^*)$ hängen einerseits


eine kennzeichnende Eigenschaft der D-Linien von Quadriken.

von $k$ enthält, also Normalebene von $k$ ist; $k^*$ ist somit tatsächlich die Planevolute von $k$.

Die von den beiden Fortschreitungsrichtungen $t$ aufgespannte Ebene $\mathbf{9} \perp TT^*$ hat die Stellung

\[(a-1) x + [(b-1) y + B] y + [(c-1) z + C] z = \text{const}, \quad (8)\]

kann demnach als Tangentialebene einer Quadrik $\Phi$

\[(a-1) x^2 + (b-1) y^2 + (c-1) z^2 + 2 A x + 2 B y + 2 C z = \text{const} \quad (9)\]

angeschienen werden. Das bedeutet aber: Die $\alpha^2$ Integralkurven unseres Problems sind identisch mit den durch den Leitkegelschnitt $c$ auf den $\alpha^1$ homothetischen Flächen $\Phi$ definierten affinen Böschungslinien. Diese stellen aber wiederum D-Linien der Quadriken $\Phi$ dar, weil $c$ die absoluten Punkte dieser Flächen enthält.

Damit ist nun tatsächlich die behauptete Umkehrung des Satzes 2 erwiesen:

*Satz 3:* Besteht bei einer reellen Raumeckscheibe ein affiner Zusammenhang zwischen ihren Punkten und Schmiegkugelmitteln, dann ist die Kurve einer Quadrik.