

Zur rechnerischen Durchführung des Vierpunktverfahrens

Von W. Wunderlich, Wien

Unter der Voraussetzung ebenen Geländes ist der geometrische Zu sammenhang zwischen Kartenbild und Luftbild bekanntlich ein kollinearer und daher vollkommen bestimmt, wenn vier Geländepunkte in beiden Bildern identifiziert werden können, wobei lediglich die Einschränkung zu beachten ist, daß diese Punkte ein echtes Viereck bilden müssen, also keine drei in einer Geraden liegen dürfen. Die Ubbertragung weiterer Punkte aus einem Bild in das andere ist dann in eindeutiger Weise möglich und wird unter der Bezeichnung ,"Vierpunklverfahren" in der Praxis häufig angewendet ${ }^{1}$). Dem Verfahren kommt insofern weitergehende-Bedeutung zu , als es auch bei beschränkten Abweichungen des Geländes oder einzelner Objekte von der Ebene mit guter Genauigkeit anwendbar bleibt.

Die konstruktive Durchführung dieser Aufgabe geschieht am bequemsten mittels der "Papierstreifenmethode", die auf der Doppelverhältnisgleichheit entsprechender Strahlenquadrupel in zugeordneten Strahlbüscheln beruht. Während diese zeichnerische Methode allgemein geläufig ist, scheint eine zweckmäßige rechnerische Durchführung der Aufgabe weniger bekannt

[^0]zu sein, obwohl gelegentliches Bedürfnis danach besteht. Es ist daher der Zweck der folgenden Zeilen, einen brauchbaren und vor allem bequem und übersichtlich zu handhabenden Rechengang aufzuzeigen.

Führt man in der Karten- bzw. Luftbildebene unabhängig voneinander kartesische Normalkoordinaten x, y bzw. x^{\prime}, y^{\prime} ein, so wird jeder kollineare Zusammenhang zwischen den beiden Ebenen bekanntlich durch lineargebrochene Transformationsgleichungen von der Bauart

$$
\begin{equation*}
x=\frac{a_{1} x^{\prime}+b_{1} y^{\prime}+c_{1}}{a_{3} x^{\prime}+b_{3} y^{\prime}+c_{3}}, y=\frac{a_{2} x^{\prime}+b_{2} y^{\prime}+c_{2}}{a_{3} x^{\prime}+b_{3} y^{\prime}+c_{3}} \tag{1}
\end{equation*}
$$

beschrieben. Setzt man die Transformationsgleichungen zunächst mit unbekannten Koeffizienten an und trägt anschließend die Koordinaten der vier bekannten Kartenpunkte 1, 2, 3, 4 und ihrer entsprechenden Bildpunkte $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$ ein, so gelangt man zu insgesamt acht linear-homogenen Bestimmungsgleichungen für die neun Koeffizienten, die sich daraus bis auf einen gemeinsamen Faktor bestimmen lassen, welcher jedoch beliebig festgesetzt werden kann. Die Auflösung dieses Gleichungssystems erfordert allerdings (trotz spezieller Bauart) einen beträchtlichen Aufwand, und selbst nach dessen Bewältigung sind die zu benützenden Transformationsformeln (1) nicht sehr bequem zu handhaben. Der beschriebene Vorgang, wie ihn beispielsweise P. Tham vorschlägt ${ }^{2}$), ist demnach kaum zu empfehlen. -S. Finsterwalder verwendet statt Normalkoordinaten schiefwinklige ${ }^{3}$), deren Achsen jeweils mit zwei Gegenseiten der Grundvierecke zusammenfallen, wodurch sich die Anzahl der Transformationskoeffizienten um vier vermindert. Der Rechenaufwand wird dadurch zweifellos verringert, doch darf nicht übersehen werden, da B das direkte Ausmessen und Auftragen schiefwinkliger Koordinaten eine mißliche Angelegenheit ist, anderseits eine Rückkehr zu Normalkoordinaten zusätzliche Transformationsgleichungen bedingt. Auch dieser Arbeitsgang ist also ziemlich umständlich.

Der nachstehend entwickelte Vorschlag, der jegliche Auflösung linearer Gleichungssysteme umgeht, läuft darauf hinaus, drei der Angabepunkte -etwa 1, 2, 3 in der Kartenebene - als Ecken eines ,"Fundamentaldreieckes" anzusehen und zur Festlegung jedes weiteren Punktes P dessen ,,Flächenkoordinaten" $f_{1}=\triangle 23 P, f_{2}=\triangle 31 P, f_{3}=\triangle 12 P$ heranzuziehen (Abb. 1). Diese speziell in der Dreiecksgeometrie vielfach bewährten Koordinaten hat schon A. F. Möbius in seinem ,"Baryzentrischen Kalkül" (1827) eingeführt ${ }^{4}$); sie gestatten nämlich neben der geometrischen Auffassung auch
${ }^{\text {2 }}$) P. T h a m, Die vollständige Lösung des Rückwärtseinschnitts. Z. f. Vermessungswesen 72 (1943), 216.
${ }^{3}$) S. Finsterw alder, Über die Konstruktion von Höhenkarten aus Ballonaufnahmen. Sitzungsber. Bayer. Akad. Wiss. 30 (1900), 149.
${ }^{4}$) A. F. Möbius; Gesammelte Werke (Leipzig 1885), Bd, I, S. 50 ff .
eine bemerkenswerte mechanische Deutung: Denkt man sich in den Fundamentalpunkten 1, 2, 3 der Reihe nach die Massen f_{1}, f_{2}, f_{3} (oder dazu proportionale) konzentriert, so fällt ihr Gesamtschwerpunkt gerade nach P.

Abb. 1
In der Tat teilt etwa der Schwerpunkt \bar{P} des Massenpaares f_{2}, f_{3} die Seite 23 im Verhältnis $2 \bar{P}: 3 \bar{P}=-f_{3}: f_{2}$, liegt also auf der Geraden $1 P$, die ja die Fläche des Fundamentaldreiecks im gleichen Verhältnis teilt. - Die Flächenkoordinaten sind selbstverständlich, dem Umlaufsinn der betreffenden Teildreiecke entsprechend, mit Vorzeichen versehen und nur für Punkte im Inneren des Fundamentaldreiecks durchwegs positiv. Bei Außenpunkten muß die mechanische Interpretation das Auftreten negativer Massen zulassen ${ }^{5}$).

Die Flächenkoordinaten des vierten Angabepunktes 4, erklärt durch die Dreiecke 234, 314 und 124, seien mit e_{1}, e_{2} und e_{3} bezeichnet. Die Gerade 14 schneidet die Seite 23 in einem Punkt 4 und teilt dieselbe im Verhältnis $2 \overline{4}: 3 \overline{4}=-e_{3}: e_{2}$. Das Doppelverhältnis der vier von 1 der Reihe nach nach 2, 3, 4 und P zielenden Strahlen läßt sich mithin - unter Heranziehung ihrer Schnittpunkte mit der Gegenseite 23 - einfach durch die Flächenkoordinaten ausdrücken:

$$
\begin{equation*}
1(234 P)=(2.3 \overline{4 P})=\frac{\overline{24}}{3 \overline{4}}: \frac{2 \bar{P}}{3 \bar{P}}=-\frac{e_{3}}{e_{2}}:-\frac{f_{3}}{f_{2}}=\frac{f_{2}}{e_{2}}: \frac{f_{3}}{e_{3}} \tag{2}
\end{equation*}
$$

Geht man nun in der Luftbildebene ganz analog vor (die entsprechenden Größen durch einen Akzent unterscheidend), so erhält man auf Grund der durch die Kollineation bedingten Doppelverhällnisgleichheit $1(234 P)=$ $=1^{\prime}\left(2^{\prime} 3^{\prime} 4^{\prime} P^{\prime}\right)$ im Hinblick auf (2) die Beziehung

$$
\begin{equation*}
\frac{f_{2}}{e_{2}}: \frac{f_{3}}{e_{3}}=\frac{f_{2}^{\prime}}{e_{2}^{\prime}}: \frac{f_{3}^{\prime}}{e_{3}^{\prime}} \tag{3}
\end{equation*}
$$

${ }^{5}$) Flächenkoordinaten wurden gelegentlich bei der affinen Übertragung herangezogen; vgl. Lerche, Zur Übertragung von Dreiecksmaschen mit Hilfe von Achsenabschnitten der Ecktransversalen. Nachr. Reichsverm.dienst 1944, 152.

Hierzu treten durch zyklisches Weiterrücken zwei ähnliche gleichwertige Beziehungen, die sich mit (3) zusammenfassen lassen zu

$$
\begin{equation*}
\frac{f_{1}}{e_{1}}: \frac{f_{2}}{e_{2}}: \frac{f_{3}}{e_{3}}=\frac{f_{1}^{\prime}}{e_{1}^{\prime}}: \frac{f_{2}^{\prime}}{e_{2}^{\prime}}: \frac{f^{\prime}}{e_{3}^{\prime}} \tag{4}
\end{equation*}
$$

Nachdem sich nun der Übergang von kartesischen Koordinaten zu Flächenkoordinaten in beiden Richtungen recht einfach vollzieht, so eröffnet sich auf Grund der Schlüsselgleichung (4) folgender Weg zur Übertragung eines Luftbildpunktes $P^{\prime}\left(x^{\prime}, y^{\prime}\right)$ in die Karte nach $P(x, y)$:

Man bestimmt zunächst die Flächenkoordination f_{i}^{\prime} von P^{\prime} in bezug auf das Fundamentaldreieck $1^{\prime}\left(x_{1}^{\prime}, y_{1}^{\prime}\right), 2^{\prime}\left(x_{2}^{\prime}, y_{2}^{\prime}\right), 3^{\prime}\left(x_{3}^{\prime}, y_{3}^{\prime}\right)$ nach dem Muster

$$
\begin{align*}
2 f_{1}^{\prime} & =\left|\begin{array}{cc}
x^{\prime} & y^{\prime} 1 \\
x_{2}^{\prime} & y_{2}^{\prime} 1 \\
x_{3}^{\prime} & y_{3}^{\prime} 1
\end{array}\right|=A_{1}^{\prime} x^{\prime}+B_{1}^{\prime} y^{\prime}+C_{1}^{\prime} \text { ust. } \tag{5}\\
\text { mit } A_{1}^{\prime} & =y_{2}^{\prime}-y_{3}^{\prime} ; B_{1}^{\prime}=x_{3}^{\prime}-x_{2}^{\prime}, C_{1}^{\prime}=x_{2}^{\prime} y_{3}^{\prime}-x_{3}^{\prime} y_{2}^{\prime} \text { ust. }
\end{align*}
$$

Durch Einsetzen der Kourdinaten des vierten Grundpunktes $4^{\prime}\left(x_{4}{ }^{\prime}, y_{4}{ }^{\prime}\right)$ für x^{\prime}, y^{\prime} in (5) erhält man dessen Flächenkoordinaten e_{i}^{\prime} vermöge

$$
\begin{equation*}
2 e_{1}^{\prime}=A_{1}^{\prime} x_{4}^{\prime}+B_{1}^{\prime} y_{4}^{\prime}+C_{1}^{\prime} \text { usf. } \tag{6}
\end{equation*}
$$

In gleicher Weise berechnen sich in der Kartenebene die Flächenkoordinaten e_{i} von 4 in bezug auf 123 nach dem Muster

$$
\text { (7) } \begin{aligned}
2 e_{1}= & A_{1} x_{4}+B_{1} y_{4}+C_{1} \\
& \text { mit } A_{1}=y_{2}-y_{3}, B_{1}=x_{3}-x_{2}, C_{1}=x_{2} y_{3}-x_{3} y_{2}
\end{aligned}
$$

Nun können auf Grund von (4) die Verhältnisse der Flächenkoordinaten f_{i} von P angegeben werden:

$$
\begin{equation*}
f_{1}: f_{2}: f_{3}=\frac{e_{1}}{e_{1}^{\prime}} f_{1}^{\prime}: \frac{e_{2}}{e_{2}^{\prime}} f_{2}^{\prime}: \frac{e_{3}}{e_{3}^{\prime}} f_{3}^{\prime} \tag{8}
\end{equation*}
$$

Für die Berechnung der kartesischen Koordinaten des Punktes P, die auf Grund der baryzentrischen Deutung vermöge

$$
\begin{equation*}
x=\frac{f_{1} x_{1}+f_{2} x_{2}+f_{3} x_{3}}{f_{1}+f_{2}+f_{3}}, y=\frac{f_{1} y_{1}+f_{2} y_{2}+f_{3} y_{3}}{f_{1}+f_{2}+f_{3}} \tag{9}
\end{equation*}
$$

zu geschehen hätte, benötigt man aber nur die Verhältniswerte, sodaß man in diesen Formeln statt der f_{i} einfach die Verhältnisgrößen $f_{i}^{\prime} e_{i} / e_{i}^{\prime}$ einsetzen kann; man bemerkt darüber hinaus, da β man statt der Flächenkoordinaten $f_{i}^{\prime}, e_{i}^{\prime}$ und e_{i} auch gleich ihre in (5), (6) und (7) vermerkten doppelten Werte verwenden kann.

Da bei der Übertragung mehrerer Punkte die Transformationskoeffizienten in (5), (8) und (9) konstant sind, so vollzieht sich der Rechengang nach Erledigung der Vorarbeiten - die, wie schon hervorgehoben wurde,
keinerlei Gleichungsauflösung verlangen - durchaus flüssig und in einer Weise, die leicht protokollarisch zu schematisieren ist und insbesondere auch für Rechenautomaten einfach programmiert werden kann.

Der in der projektiven Geometrie Bewanderte sieht natürlich, da $ß$ das auseinandergesetzte Verfahren im wesentlichen auf die Einschaltung homogener projeltiver Koordinaten hinausläuft, die sich auf dieFundamentaldreiecke 123 bzw. $1^{\prime} 2^{\prime} 3^{\prime}$ und die ,Einheitspunkte" 4 bzw. 4^{\prime} gründen. Diese Koordinaten ξ_{i} bzw. ξ_{i}^{\prime} sind zu den Größen f_{i} / e_{i} bzw. $f_{i}^{\prime} \mid e_{i}^{\prime}$ proportional und stimmen für kollinear entsprechende Punkte in den Verhältnissen überein [vgl. (4)]. Auch diese Auffassung führt aber bei expliziter Durchführung auf die hier in einer dem Anschauungsbedürfnis des Praktikers gemäßen Weise elementar abgeleiteten Formeln. - Den Betrachtungen waren kartesische Normalkoordinaten x, y und x^{\prime}, y^{\prime} zugrundegelegt worden, doch behalten alle Formeln auch für schiefwinklige Koordinaten (und verschiedene Maßeinheiten) ihre Gültigkeit.

Einige Worte mögen noch speziell der Bestimmung des Bild- und Kartenhorizonts gewidmet werden, wofür K. Killia n kürzlich eine einfache Vorschrift mitgeteilt hat ${ }^{6}$).

Der Bildhorizont ist jene Gerade in der Luftbildebene, die der Ferngeraden der Kartenebene entspricht. Diese Gerade ist offenbar durch das Verschwinden der Nenner in (9) gekennzeichnet, führt also wegen (8) auf die Bedingung

$$
\begin{equation*}
\frac{e_{1}}{e_{1}^{\prime}} f_{1}^{\prime}+\frac{e_{2}}{e_{2}^{\prime}} f_{2}^{\prime}+\frac{e_{3}}{e_{3}^{\prime}} f_{3}^{\prime}=0 \tag{10}
\end{equation*}
$$

Setzt man hierin für die $f_{i}{ }^{\prime}$ die Ausdrücke aus (5) ein, so hat man bereits die Gleichung des Bildhorizontes in den kartesischen Koordinaten x^{\prime}, y^{\prime}.

In analoger Weise läßt sich der Kartenhorizont ermitteln, der in der Kartenebene der Ferngeraden der Luftbildebene zugeordnet ist; es sind lediglich gestrichene und ungestrichene Größen zu vertauschen. Man kann sich aber auch direkt zwei Punkte X und Y des Kartenhorizonts verschaffen, indem man einmal x^{\prime} bei festem y^{\prime} und das andere Mal y^{\prime} bei festem x^{\prime} über alle Schranken wachsen läßt. Im ersten Fall erhält man zufolge (5) in der Grenze $f_{1}{ }^{\prime}: f_{2}{ }^{\prime}: f_{3}{ }^{\prime}=A_{1}{ }^{\prime}: A_{2}{ }^{\prime}: A_{3}{ }^{\prime}$, im zweiten Fall $f_{1}{ }^{\prime}: f_{2}{ }^{\prime}: f_{3}{ }^{\prime}=B_{1}{ }^{\prime}: B_{2}{ }^{\prime}$ $: B_{3}{ }^{\prime}$, und bestimmt dann mit diesen Werten über (8) und (9) die Koordinatenpaare jener Horizontpunkte X und Y, die den Fernpunkten der x^{\prime} - und y^{\prime}-Achse zugeordnet sind. Weitere, unter Umständen günstiger liegende Horizontpunkte könnte man durch Linearkombination mittels

$$
\begin{equation*}
f_{1}{ }^{\prime}: f_{2}{ }^{\prime}: f_{3}{ }^{\prime}=\left(A_{1}{ }^{\prime}+\lambda B_{1}{ }^{\prime}\right):\left(A_{2}{ }^{\prime}+\lambda B_{2}{ }^{\prime}\right):\left(A_{3}{ }^{\prime}+\lambda B_{3}{ }^{\prime}\right) \tag{11}
\end{equation*}
$$

bei beliebigem (geeignetem) λ bekommen.

[^1]
[^0]: ${ }^{1}$) Vgl. etwa K. Schwidefsky, Einführung in die Luft- und Erdbildmessung (Leipzig/Berlin, 2. Aufl. 1939), S. 67 ff.

[^1]: ${ }^{6}$) K. Killian, Beitrag zur geometrischen Bestimmung der Lotrichtung in der Luftbildmessung. Österr. Z. f. Vermessungswesen 44 (1956), 79.

