
MaBE Agents and n-Phase-Commit

Roland Schaffer

June 24, 2004

Abstract

This paper describes the differences between n-Phase-Commit algorithms
and it shows - and proofs - why only a 3-Phase-Commit transaction handling
can satisfy business process requirements as they are planned in MaBE.

1 Overview
It is depicted why distributed transactions have to be atomic and what conditions
have to be met to reach this goal. This paper also describes why distributed com-
mitting is needed and which algorithms exist. It also shows where the differences
between n-Phase-Commit algorithms are and it shows why only a 3-Phase-Commit
transaction handling can truly satisfy business process requirements.

2 Distributed Commit
A transaction has to be an atomic action. Hence a distributed transaction has to
be atomic too. There are a few protocols available that provide atomic properties,
those are so called Atomic Commit Protocol(s) (ACPs). A transaction is either
commited (state: COMMIT) or aborted (state: ABORT or CANCEL). The exe-
cution of a distributed transaction is a very complex action which can fail for the
very simplest reasons, e.g. a failure of a modem-line or locked dataset or due to
other contrarities, there are lots of them.

The now discussed n-Phase-Commit algorithms are controlling (in the most
abstract point of view arbitrary) changings in heterogeneous systems. From the
point of view of MaBE the system is not heterogeneous (the system used is JADE).

The following n-Phase-Commit methods are controlling the formerly men-
tioned changings (in heterogeneous systems). This commit takes place in the
very simplest case on database level and in more complex cases on business pro-
cesslevel.

1



MaBE Agents and n-Phase-Commit 3. 1-Phase-Commit

To be able to execute distributed transactions a so called coordinator [CDK96,
p 411] is required. This coordinator can be a dedicated server or a service layer. In
the case of MaBE there is no service layer, thus a Coordinator-Agent or an agent
which is involved in the transaction takes the role of the coordinator. Bernstein
came up with a set of rules for an atomic commit.

Bernsteins conditions[BGR87, p 224] which an Atomic-Commit-Protocol must
meet are:

AC1 all processes which makes a decision, make the same decision

AC2 a process can not change a desicion which it has already made

AC3 a COMMIT decision can only be made if all processes did vote YES

AC4 the decision must be COMMIT if there were no errors and all processes
voted YES

AC5 based on the assumption that there are only errors which the algorithm has
to tolerate according to its design, then the following rule applies: at any
moment of its execution, when all errors which occured are corrected and
no new errors occured long enough, then all involved processes will make a
decision eventually.

3 1-Phase-Commit
As in Bernsteins laws can be seen, the atomicity of a distributed transaction re-
quires the transaction to fail on all involved systems or to take place on all involved
systems. A simple way to achieve this goal is to let the coordinator send a COM-
MIT or ABORT command to the involved systems until it receives an execution
confirmation of all of them[CDK96, p 414]. This means, that 1-Phase-Commit
is not useful because after a transaction took place, there is no way to assure that
all systems did the same action. The coordinator does receive a reply from the
systems but this reply can be a commit or an abort. After receiving the reply,
the 1-Phase-Commit is over and therefor this algorithm is of no use in a business
environment.

4 2-Phase-Commit
The algorithm, simplified [CCPS00, p 357 et sqq.]:

Phase 1: The transaction service (aka coordinator) receives a COMMIT request
from a resource and sends a PREPARE to all involved resources. The involved
resources executes a voting and reply with COMMIT or VETO.

2



MaBE Agents and n-Phase-Commit 4. 2-Phase-Commit

Phase 2: The transaction service verifies the replys. When there is no single
VETO, denn it executes a COMMIT else a ROLLBACK.

Unfortunately this protocol does provides lots of possibilities for failures. In
the worst case there are various systems with equal many communication channels
involved. Every system communicates - in case of success - four times (or five
times, depends on implementation) with the coordinator:

1. transaction data

2. coordinator to all systems: Will the transaction be successful?

3. individual system to coordinator: YES!

4. coordinator to all systems: Execute transaction!

5. individual system to coordinator: Transaction done. (optional, not required
by algorithmus).

The last message (5) is not counted as an expense ([CDK96, p 417]) due to the
fact that 2-Phase-Commit can be done without this message.

Now there can be any of this messages erronious and have to be sent arbitrary
often by the hardware, thus it is - according to Colouris - possible that a 2-Phase-
Commit can be done successfully but it is not possible to provide a deadline for
the transaction. That means the involved systems can become deadlocked.

The big advantage of the 2-Phase-Commit protocol is the guaranty of global
atomicity. The very drawback is that it is a blocking protocol and thus able to
deadlock its resources. To check Bersteins laws it harms the 5th condition(→
Chap. 2 / p 2): as soon as the coordinator or its communication channels crashes
all involved systems have to wait for its - the coordinator or the network - restart.

In figure 1 / p 4 is q the start state, p the prepare state (transition to phase 2),
c the commit and end state (successful end state) and a the abort and end state
(failure end state). The i names the appropriate system:

i ∈ {2, 3, 4, · · ·} : resource, i = 1 : coordinator

The start state is qi, in this state the coordinator sends the PREPARE message and
receives YES or NO replies. If there is a system crash during the transaction, lets
say all agents including the coordinator agent crashes except agent A3, then this
agent can only be in state p3. Now Agent A3 has the following options:

A3(p3)
ABORT−→ A3(a3) or A3(p3)

COMMIT−→ A3(c3)

But in this very moment it does not matter what the decision of agent A3 was
because there is a high probability that another system voted YES or NO. For this

3



MaBE Agents and n-Phase-Commit 5. 3-Phase-Commit

p
i

PREPARE
YES

COMMIT

ABORT

[HAVECOMMITTED]

ci

aiq
i

NO
PREPARE

Figure 1: 2-Phase-Commit Statediagram

reason, agent A3 has to wait for all other agents to come back online. Thus proofs
the protocol blocking (see [Gad95, p 3] and [BGR87, p 227 et sqq.]).

To avoid blocking there could timeouts be applied. But this will work only
at a first glance. After the timeout occurs, the timeout event would transit the
transaction into a predefined state, say ABORT. This would work very nice for
all messages except for the last one. As described in the previous paragraph, the
agent has to wait. If it does not - due to a timeout - it would ruin the successful
transaction because one glance after the timeout all crashed systems could have
be back online and sent a YES and, worse, after the timeout the agent has no
possibility to inform the coordinator of its ABORT which would harm Bernsteins
2nd condition (→ Chap. 2 / p 2): a process is not allowed to change its decision.

5 3-Phase-Commit
The 3-Phase-Commit protocol is not blocking. It has the following properties[Gad95,
p 1]:

• not blocking in case of system crash

• all failed systems have to come to the same result (YES/NO) - afer their
restart - as before the failure occured

• working systems shall agree upon the result of the transaction by considering
their own result states

• an already made decision must be consistent with the final result of all work-
ing systems

4



MaBE Agents and n-Phase-Commit 5. 3-Phase-Commit

Figure 2: 3-Phase-Commit Statediagram [Gad95, p 2]

5



MaBE Agents and n-Phase-Commit 6. MaBE-Agents and 3-Phase-Commit

The 3PC algorithm according to Colouris [CDK96, p 446] (→ Figure 2 / p 5):

Phase 0: The coordinator receives a COMMIT-inquiry from any system. This
initiating phase does NOT count as a step!

Phase 1: The coordinator sends a PREPARE (or a VOTE-REQUEST) state-
ment to all involved systems. These systems perform a voting and answers with
COMMIT or VETO.

Phase 2: The coordinator collects all votings and makes a decision. If there
was a VETO, then its decision is ABORT and it informs all systems that voted
COMMIT about the cancellation. If all systems voted COMMIT - that means no
VETO arrived - then the coordinator sends a PRE-COMMIT to all systems, else it
sends an ABORT. The systems reply with ACKNOWLEDGE.

Phase 3: The coordinator collects the ACK’s and after all arrived it sends
COMMIT to all systems. If a system receives a COMMIT the commit gets ex-
ecuted.

Be aware of the fact, that if the coordinator crasches in state p1 at least 1 par-
ticipant is in state pi too, so all YES-Voters can in state wi can transpose to pi and
eventually commit. If no participant is in pi state, nothing happens, because none
did receive or invoke a commit.

If a participant cannot receive a message in the wait state wi, it asks all re-
maining participants if one of them is in PRE-COMMIT state. If there is one, the
participant will shift to PRE-COMMIT and finally commit, otherwise it will go to
ABORT.

The very trick of 3PC is that in the first stage the default action is to ABORT
opposite to the final stage where it is COMMIT and that it is not possible that two
nodes are more than 1 stages apart. That means that at every moment no single
node i is in Phase-1 if another node j is in Phase-3, in other words: the state
distance between any two nodes can be at most 1.

∀i, j ∈ {1, · · · , n} : statedistanceij ≤ 1

6 MaBE-Agents and 3-Phase-Commit
There must be a coordinator and one or more participants. I recommend the in-
voking agent as the coordinator. The advantage is, that the invoking agent wants
to commit, so it will not opt against the transaction and therefore its VOTE pre-
condition can safely be set to YES.

6



MaBE Agents and n-Phase-Commit 6.1 Coordinator

It is a more or less political question, whether a company decides to use 3PC
or not. In most applications a 2PC transaction model is implemented because it is
a little bit simpler and causes less traffic overhead.

In case of MaBE I really do recommend to use 3PC because agents are talking
over large and long distances. Anything can happen to those communication lines
and servers where the JADE platforms are running, thus a blocking protocol -
which puts an agent into a deadlock - is not only not appropriate but even more
dangerous for all involved business partners also known as agents. A lot of nasty
things can happen to the involved programs, platforms and lines and the weak
assertion Blocking events will occur seldom as it is used to argument the 2PC
protocol is too weak.

In the worst case all involved agents get stuck for a pretty long time. Dead-
lock detection is - especially in this case - a pretty hard piece of work. So the
recommendation can only be to use a 3-Phase-Commit protocol in the MaBE en-
vironment.

Based upon the 2PC pseudo code [TvS02, p 396 et sqq.] from Tanenbaum I
wrote a 3PC pseudo code (but with only one thread, Tanenbaum used two of them):

6.1 Coordinator
/* COORDINATOR */
/* P1 */
write START_3PC to local log;
multicast PREPARE to all participants;

/* P2 */
while not all votes have been collected {

wait for any incoming vote;
if time out {

write GLOBAL_ABORT to local log;
multicast GLOBAL_ABORT to all participants;
exit;

}
record vote;

}
if all participants sent VOTE_COMMIT and coordinator votes COMMIT {

write PRE_COMMIT to local log;
multicast PRE_COMMIT to all participants;

} else {
write GLOBAL_ABORT to local log;
multicast GLOBAL_ABORT to all participants;
exit;

}

/* P3 */
while not all acknowledges have been collected {

wait for any incoming acknowledge;
if one sends NOT_ACK { /* NOT_ACK will NEVER(!) occur due to Bernstein’s law!!! */

write GLOBAL_ABORT to local log;
multicast GLOBAL_ABORT to all participants;
exit;

}else{
if timeout {

ignore it, participant performs commit after recovery;
}

}
record acknowledge;

}

if all participants sent ACK {
write GLOBAL_COMMIT to local log;
multicast GLOBAL_COMMIT to all participants;

7



MaBE Agents and n-Phase-Commit 6.2 Participant

} else {
the else (ABORT/exit) has already been done in the WHILE part

}

6.2 Participant
/* PARTICIPANT */

/* P1 */
write INIT to local log;
wait for VOTE_REQUEST from coordinator;
if time out {

write VOTE_ABORT to local log;
exit;

}

if participant votes COMMIT {
write VOTE_COMMIT to local log;
send VOTE_COMMIT to coordinator;

} else { /* participant votes ABORT */
write VOTE_ABORT to local log;
send VOTE_ABORT to coordinator;
exit;

}

/* P2 */
wait vor DECISION from coordinator;
if timeout {

multicast DECISION AND PHASE STATE REQUEST to other participants;
wait until DECISION AND PHASE is received; /*remain blocked*/
write DECISION to local log;

}
if DECISION == PRE_COMMIT and and least one other PHASE == PRE_COMMIT

write PRE_COMMIT to local log;
else if DECISION == GLOBAL_ABORT or no other PHASE == PRE_COMMIT {

write GLOBAL_ABORT to local log;
exit;

}

/* P3 */
send ACK to coordinator;
wait until DECISION is received;
if timeout or DECISION == COMMIT {

write GLOBAL_COMMIT to local log;
perform the commit;

} else { /* this will never occur */
write GLOBAL_ABORT to local log;
exit;

}

Be careful at implementation time. If one of those two agents (coordinator or partic-
ipant) crashes, they have to be recovered from the local log. Be really careful to recover
to the proper state or the whole thing will be an undefined beast. Be sure to use a simple
logfile and not a persistence tool. The whole thing depends on a fast, rigid and reliable
construction. A persistance tool with a database on its backend will only add a lot of
possible failure conditions.

8



MaBE Agents and n-Phase-Commit REFERENCES

References
[BGR87] Philip A. Bernstein, Nathan Goodman, and Vassos Radzilacos. Concur-

rency Control and Recovery in Database Systems. Addison-Wesley, ISBN:
0201107155, 6 1987.

[CCPS00] Andrea Conzett, Ryan Cox, Joaquin Picon, and Gianni Scenini. IBM Web-
Sphere Application Server Enterprise Edition Component Broker 3.0: First
Steps, SG24-2033-03. IBM Redbooks. IBM, Boulder, CO, 8 2000. ISBN
0738419184.

[CDK96] George Couloris, Jean Dollimore, and Tim Kindberg. Distributed Systems.
Addison Wesley, England, 2nd edition, 1996.

[Gad95] Srinivas R. Gaddam. Three-phase commit protocol. WWW, 4 1995. URL:
http:// ei.cs.vt.edu / cs5204 / fall99 / distributedDBMS / sreenu / 3pc.html.

[TvS02] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems. Prentice
Hall, New Jersey, 2002.

9


