
1 Math Lectures GG – Elementary

▸▸▸Application: measuring distances through GPS
Using GPS (Global Positioning System), it is possible to determine one’s position at
any point on Earth up to a few meters. We will discuss in Application p. 36 how these
remarkably precise positions are calculated. In summary, it is necessary to take accurate
measurements of one’s distance to three satellites. These satellites continuously transmit
characteristic signals that propagate at the speed of light. In order to determine the
distance of the satellite, one must measure the time that it takes for the signal to reach
the receiver, and multiply it by the speed of light. How accurately must such time
measurements be taken so that the accuracy of position would fall within 1 m?

Solution:
The speed of light 300,000 km

s = 3 ⋅ 105 km
s = 3 ⋅ 108 m

s implies that the time for the signal
to cross a meter is 1

3 ⋅ 10−8 s ≈ 3.3 ⋅ 10−9 s.
One should be able to measure time to an accuracy of a nanosecond. Even in a micro-
second, the GPS signal will already have travelled a distance of 300 m.

⊕Remark : Even atomic clocks (which are used on satellites) can “only” measure microseconds

reliably (the magnitude of error of such a clock equates to about 1 second in 6 million years). To

overcome this difficulty, the GPS employs a trick: The characteristic signal encodes a description

within the wave itself: Since it has a period of 300 m in length, the exact position within the

oscillation at the time the wave is received can be observed. Thus, it is possible to say how many

nanoseconds have passed since the last microsecond. ⊕ ◂◂◂

▸▸▸Application: if the Antarctic ice melts . . .
The Antarctic (the mainland has a surface area of about 12 million km2) has only
relatively recently become frozen – but now it is all the more so! The major part of the
fresh water on Earth is bound in its ice sheet, which is about 2 km thick on average. By
how much will the sea level rise if the ice melts completely?

Fig. 1.1. the Antarctic and one of its inhabitants – the emperor penguin

Solution:
We will set the unit to kilometers. The volume of ice on the mainland is 24 ⋅ 106 km3.
When ice melts, it loses about 10% of its volume, so that about 21 ⋅ 106 km3 remains.
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The Earth has a surface area of about 500 ⋅ 106 km2, of which 70% ≈ 350 ⋅ 106 km2 is
water. Let ∆ be the difference in the heights of the sea level, then

350 ⋅ 106 km2 ⋅∆ = 21 ⋅ 106 km3 ⇒∆ ≈ 21

350
= 0.06 km = 60 m.

⊕Remark : 60 m is quite a lot. With this rise of sea level, whole groups of islands would disappear,
large parts of Florida would be flooded, etc. The emperor penguins probably would die out – not
because the temperature would become too high, but because once again – as before – mammals
and reptiles would start to live on the Antarctic. These mammals and reptiles would then steal
the eggs of emperor penguins and eat their defenceless pups.

Fig. 1.2. The last glacial maximum (≈ 24,500 BC): Vast ice sheets covered large parts of northern
Europe, North America, Siberia, and also parts of the southern hemisphere.

Conversely, the sea level rose to this level of 60 meters about 15 million years ago (because the

Antarctic was free of ice). During the ice ages that have occurred several times in the last 100,000

years (where, for example, thick ice was superimposed over central and northern Europe), the sea

level was 125 m (!) lower than today. Today divers in Southern France have found underground

entrances of caves where Stone Age people lived! The low sea allowed a small group of people

to walk across the Bering Strait from Siberia to Alaska. During that time, they had more than

22,000 years to migrate to the two American continents (they joined together only 3 million

years ago). ⊕ ◂◂◂
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▸▸▸Application: continental drift
Pangea broke up into two roughly equal continents called Laurasia and Gondwana rough-
ly 280 million years ago. About 150 million years ago, Gondwana further broke and has
been drifting apart since then – as seen, for example, in the movement of South America
and Africa away from each other. What used to be a daring theory (Alfred Wegener ,
1912) can be confirmed through measurement today. Assume that the drift velocity v
was reasonably constant and calculate how far Africa and South America drift apart
every year or how far they drift apart every second when their current distance is about
5,000 km. ◂◂◂

Fig. 1.3. drifting continents, tectonic plates

Solution:

v = 5,000 km

150 ⋅ 106 a
= 5 ⋅ 106 m

150 ⋅ 106 a
≈ 3 ⋅ 10−2 m

a
= 3 ⋅ 10−2 m

365 ⋅ 24 ⋅ 3,600 s
= 3 ⋅ 10−2 m

3 ⋅ 107 s
= 1 ⋅ 10−9 m

s
.

We have a drift velocity per year of 3 cm.

⊕Remark : We can measure the original distance using the drift velocity of 3 cm per year by

looking at the current positions (currently at 1 m accuracy) of many places in Africa or South

America over large time intervals by means of GPS (Application p. 1, Application p. 36). Then,

the drift velocity is obtained by calculating the average, and this becomes more accurate given

the more measurements one has taken and the longer the time interval is (for example, 5 years). ⊕

▸▸▸Application: a global conveyor belt as an air motor
The enormous amount of 20 million cubic meters of salt water (which is almost half the
amount of freshwater on Earth) flows every second, most of it at great depths. It flows
in streams at a rate of 1 to 3 km per day repeatedly around the world (Fig. 1.4). In
certain places, for example, in the Gulf of Mexico, this stream is “caught” and rises so
that it heats up, quickly reaching the polar regions (the Gulf Stream!), where it cools
down rapidly and descends again. Looking at the six projections in Fig. 1.4, the question
arises: How long will a full cycle take?

Solution:
An important preliminary remark: The circulation belt is usually depicted on a “rectan-
gular projection” where each estimation of length – especially near the poles – leads to
incorrect results.The sphere is doubly curved and cannot be unfolded distortion-free into
the plane. The multiple belts encircling the South Pole (bottom right) is clearly visible
in the image. It is in total no more than a huge loop in the Pacific (bottom left). If we
estimate the length of all flows thoroughly, then the length is roughly three times the
Earth’s circumference (120,000 km). Assuming the flow covers a distance of 1 to 3 km
daily, then assuming a yearly distance of 600 km – just to have a “nice number” – the
cycle lasts for 200 years. ◂◂◂
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Fig. 1.4. thermohaline circulation, colloquially shown as a global conveyor belt in different views
of the globe. Images using a single view of the globe can easily lead to misinterpretations of the
currents (particularly around the Antarctic).
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▸▸▸Application: a crown of pure gold
Legend says that King Hiero confronted the great all-round scientist Archimedes with
a tricky question, and the answer was a matter of life or death for his goldsmith: He
wanted to know if his crown was made of pure gold, but this should be determined
without destroying the crown. Archimedes’s answer: He brought a balance beam (Fig.
1.5) to balance between a piece of pure gold on one side and the crown on the other side.
It changed upon immersion within water and was not at equilibrium, which spelt bad
news for the goldsmith . . .

G1

d1

G2

d2

Fig. 1.5. the gold test of Archimedes: G1 ∶ G2 = d2 ∶ d1

Solution:
Here Archimedes combined two of his most important inventions: the law of the lever
and Archimedes’s principle concerning buoyancy. Suppose a calibrated weight of pure
gold (weight G1, mass M1 = G1/%1; the density %1 = %Au being as given in the previous
example). With a volume of V2 and a density of %2, the crown has the weight G2 = V2 ⋅%2 ⋅g.
If the beam balance (Fig. 1.5, left) is in equilibrium, then G1 ∶ G2 = d2 ∶ d1 from which
G2 can be deduced.
If we now submerse the two weights completely in water, their buoyancy forces reduce
by about the weight of either displaced amount of water. Thus, the respective density
decreases indirectly by about the density of water, i.e., about 1 kg per dm3:
G∗

1 =M1 ⋅ (%1 − 1) = G1 ⋅ (%1 − 1)/%1 and G∗

2 =M2 ⋅ (%2 − 1) = G2 ⋅ (%2 − 1)/%2.

With the same density %1 = %2, the balance remains in equilibrium. However, if %2 < %1,
then the buoyancy of the crown is slightly higher, and as a result, the crown rises.
Equilibrium is reached again only when the bearing point is moved to the left by a
(measurable) distance of ∆ (Fig. 1.5, right). With a little skill, you can calculate %2 from
all known values, and it subsequently determines a possible silver content in the crown.
This works well when using a weight G1 that is not made of pure gold. ◂◂◂

▸▸▸Application: swarm rules (Fig. 1.6)
At times, shoaling fish or flocking birds seem to “dance” in the water or in the sky. One
might be excused for thinking that there is a complicated and deliberate choreography
behind it. Animals often gather or travel together in large numbers. In many cases,
this swarming behavior serves as a defense against predation. Yet, how can we explain
the complex and intriguing motions of swarms, as these collections of animals change
directions within a fraction of a second, split up into groups and then reunite?

Solution:
One might assume the existence of an alpha specimen that determines the motion of the
swarm. However, how is it possible that this individual always stays at the front of the
pack? In fact, there is no such leader of the pack. All members of the swarm are equal
while they are in motion and merely follow three very simple rules:
1. Move in a common direction.
2. Always keep a certain distance to your neighbours.
3. If a predator is approaching, escape.
In moments of danger, the distances between neighbours increase due to reaction time.
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Fig. 1.6. three major rules . . .

The swarm becomes wider and may even “tear apart”, but as soon as the predator has
left the scene, the remaining group usually reunites. As a virtual shark attacks a swarm
in a computer simulation, all individuals obey the abovementioned rules. This simulation
yields extremely realistic behaviour and may, thus, be taken as heuristic “proof” that the
swarm rules actually exist. What is more, predators are usually distracted by swarming
behaviour, and the chances of survival are larger for the individual. ◂◂◂
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Objects are considered to be similar if they differ only in scale but not in form. Angles are
identical, and pairs of lengths are at a constant proportion k with respect to each other.

In the plane, the following important theorem applies:

If the lengths of a two-dimensional object are enlarged by a factor k, then its area is
enlarged by the factor k2.

Fig. 2.1. a remarkable proof

▸▸▸Application: Einstein’s proof of the Pythagorean theorem
Almost everyone knows the formula a2 + b2 = c2 for the lengths of the sides of a right
triangle. There are hundreds of different proofs for it. Particularly noteworthy is the
proof that the eleven year-old Albert Einstein (18791955) discovered.

Solution:
Einstein imagined a triangle ABC as being composed of the similar (since the angles
are the same) component triangles CBD and ACD (Fig. 2.1). All three similar triangles
(they have hypotenuses a, b, c) can be obtained from a prototype with a hypotenuse
of length 1 by multiplying its sides by the factors a, b, c. Let F be the area of this
prototype. Since the area of a triangle grows as the square of the scaling factor, we
have F ⋅ c2 = F ⋅ a2 + F ⋅ b2, and one has only to cancel F to obtain the Pythagorean
theorem. ◂◂◂

In space, the analogous and important result on scales reads:

Let an object and a similar copy of it be given. Corresponding measures L in lengths may
be in a ratio of 1 ∶ k (scaling factor k), then corresponding areas (surfaces) are in a ratio
1 ∶ k2 and corresponding volumes are in ratio 1 ∶ k3:

L1 ∶ L2 = 1 ∶ k, S1 ∶ S2 = 1 ∶ k2, V1 ∶ V2 = 1 ∶ k3. (2.1)

When you magnify an object, the volume increases faster than the surface. Specifically:
The ratio V ∶ S = Volume ∶Surface is proportional to the scaling factor k.

▸▸▸Application: construction of the pyramids of Giza (Fig. 2.2)
What percentage of the mass of the Great Pyramid of Giza (pyramid of Chephren,
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Menkaure) was installed at the time when the pyramid reached one-third (one-half,
three-fourths) of its final height? What percentage of the surface was done at this time?

Fig. 2.2. the pyramids of Giza at the outskirts of Cairo

Solution:
The following statement applies to each of the pyramids:
We expect the missing upper part of the pyramid to be similar to the totally built
pyramid. This residual pyramid had 2/3 (1/2, 1/4) of the final height. The missing mass
was, therefore, (2/3)3 = 8/27 ((1/2)3 = 1/8, (1/4)3 = 1/64) of the total mass. Thus,
1 − 8/27 = 19/27 (1 − 1/8 = 7/8,1 − 1/64 = 63/64) of the mass has already been installed,
or about 70% (87.5%, 98.4%). For the surfaces, the square of the scaling factor matters.
Accordingly, for the time in question, there is already 1 − (2/3)2 = 5/9 (1 − (1/2)2 = 3/4,
1 − (1/4)2 = 15/16) of the surface finished, this is about 56% (75%, 94%).

⊕Remark : The surface of the great pyramids was originally smoothly polished and reflected sun-

light. Thus, the pyramids offered a completely different impression than today. Only about 500

years ago, the precious surface material was almost completely removed and used for the con-

struction of buildings in Cairo. Only the uppermost part of Khafre’s Pyramid is still reasonably

intact. ⊕ ◂◂◂

▸▸▸Application: weight comparison
A man of 1.60 m height has a mass of 50 kg. What is the mass of another man who is
2 m tall and has a similar figure?
Because of the same density, the masses are in ratio M1 ∶ M2 and so are the volumes
V1 ∶ V2,

k = 2 ∶ 1.6 = 1.25 ⇒ k3 ≈ 2⇒ M2 ≈ 2 ⋅M1 = 100 kg.

In practice, however, larger people often have different proportions. In fact, they tend
to have muscles of a relatively smaller gauge.1 ◂◂◂

▸▸▸Application: the surface of the Moon and Mars
The Moon has a fourth of the diameter of the Earth, and therefore, a sixteenth of the
surface, i.e. approximately 31 million square kilometers. This is almost exactly the area
of Africa. Mars has a diameter that amounts to a little more than half the diameter of
the Earth (0.532). Thus, the surface is little more than a quarter of the Earth’s surface
(0.5322 = 0.283), which is the area of all continents together. ◂◂◂

1The exact mathematical result, therefore, does not necessarily coincide with the various “BMI tables” (body
mass index), which can be found on the Internet.
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▸▸▸Application: subjective size of the Moon
The distance of the Moon from the Earth varies between 356,410 km and 406,760 km.
How many times greater in these extreme cases do the following appear: a) the surface
of the crescent, b) the supposed volume c) the brightness of the Moon?

Fig. 2.3. subjective Moon size at varying distances

Solution:
The given circumstances relate the respective centers of the Earth and the Moon. In fact,
we have to subtract the Earth’s radius R = 6,370 km, though the result is, of course,
hardly affected (Fig. 2.3). We have

1 ∶ k = (356,410 km − R) ∶ (406,760 km − R) ≈ 1 ∶ 1.144

⇒ A1 ∶ A2 = 1 ∶ 1.31, V1 ∶ V2 = 1 ∶ 1.50.

The area of Moon’s disc in the firmament fluctuates by almost a third, and with it, the
radiation strength of the Earth fluctuates through the Moon as well. The Moon’s volume
subjectively varies by as much as 50%. However, these extreme values are only achieved
at intervals of several months. ◂◂◂

▸▸▸Application: divers fears (Fig. 2.4)
Viewed through a diving mask, submerged objects appear 4

3 times their actual size (based
on the length scale). So, a 1.3 m long reef shark appears to have a length of 1.7 m, but
with an alleged mass increasing by a factor of (43)3 ≈ 2.4 (240%). This may be seen as a
possible contributing reason behind reported sightings of gigantic sharks. ◂◂◂

Fig. 2.4. Diver’s fears: The author faces a 2.6 m dusky shark (Carcharhinus obscurus), photo
from above: Sean Hedger.

▸▸▸Application: diver’s reality
The greatest danger to divers is not sharks. It is the so-called decompression sickness
(“caisson disease” or “the bends”). It occurs when a diver stays at a great depth for a long
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time and then emerges too fast. Due to the increased external pressure, more nitrogen
is accumulated in the blood and in the tissues, while the oxygen in the respiratory air
is exhausted. During ascent, the reduction of external pressure (Henry ’s law) causes
nitrogen bubbles to form in the blood and tissues. If they are not “exhaled” in time by
a very slow ascent, they expand and are “caught” in the joints and tissues. This initially
results in extreme strong joint pain (“bends”) and can be fatal if the diver is not brought
up in time for recompression in a hyperbaric chamber (decompression chamber).
Numerical example: For each 10 m depth increase in water, the external pressure increases by

1 bar. In a water depth of 30 m, there is a pressure of 1 bar + 3 bar = 4 bar. The diver now makes

a rapid ascent (> 20 m per minute), for example because the diver’s air supply has run out. The

resulting rise in nitrogen bubbles are then not fully exhaled and they increase in volume due to

the pressure reduction. The surface volume is now a quarter of the external pressure; hence, it has

(4 bar → 1 bar) quadrupled. The radius – and thus the diameter – of each bubble has increased

by a factor of 3
√

4 ≈ 1.6. Diagnosis: The “bends” get worse the longer the diver has been exposed

to high pressure. ◂◂◂

▸▸▸Application: floating needles (Fig. 2.5)
It is well-known that a water strider is supported by the surface tension of water. One
can hardly imagine that this is also true for a steel needle. Although steel has almost
eight times the density of water (% = 7.8 g/cm3), a sufficiently small steel needle – if it is
very carefully placed on the surface of water – “swims”. Find the reason for this. How
much bigger/heavier could an aluminium needle be (% = 2.7 g/cm3)? Is a gold needle
(% = 19.4 g/cm3) able to float?

Fig. 2.5. floating steel needle, water striders, spider (not a water spider!)

Solution:
The smaller the steel needle, the greater its surface area relative to its volume or weight.
From a certain critical length (depending on the needle’s shape), the needle’s surface,
and thus the surface tension of the water, is large enough to carry the steel needle.
A similarly shaped aluminium needle can be k = 7.86/2.7 ≈ 3 times as long. The volume
is then k3 times as large, but the weight is only k2 times as large, and thus, the surface
has increased as well.
Without much ado, the needle can be made from pure gold if it is k = 7.86/19.4 ≈ 1/2.5
shorter. ◂◂◂

▸▸▸Application: less heat loss through a larger body (Fig. 2.7).
Explain why large whales are much more likely to live in Arctic waters than small whales
(lengths: dolphin . . . 2m, blue whale . . . 20m).

Solution:
Since the body shapes are fairly similar, the ratio V

S of the whale is k = 10 times as large
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Fig. 2.6. Arctic fox and desert fox (ear
size)

Fig. 2.7. blue whale and dolphin (larger bodies ha-
ve comparatively less surface)

as the dolphin’s ratio. The surface of the blue whale can be kept warm by its circulation
of blood. Therefore, it is 10 times easier to keep it warm.

⊕Remark : The Arctic waters have lots of oxygen, and therefore, they are more nutritious. The

largest whales are, thus, more likely to be found there. They only swim in warmer waters so that

their newborn calves do not freeze in the colder waters. ⊕
⊕Remark : African elephants have cooling problems because of their body size. That is why they

have big ears (surface area and of course “fan function”).

The “cold-blooded” great white shark, which is constantly in motion (Application p. 34), loses

so little warmth to the outside that its body temperature can be up to ten degrees more than

the water temperature. ⊕
⊕Remark : Arctic foxes and desert foxes almost have the same shape. It is striking that desert

foxes have much larger ears (Fig. 2.6). These are used for listening to the often almost noiseless

and odorless preys (scorpions, etc.), as well as for cooling. Naturally, the Arctic fox has to forgo

both. ⊕ ◂◂◂

Fig. 2.8. The swan is one of the largest flying birds (up to 14 kg mass).

▸▸▸Application: weight limit for volant animals
Why do volant animals (especially birds) have a weight limit (10 − 15kg)?

Solution:
Buoyancy while flying is related to the wing-span (“tearing edge”) and wing surface. The
change of both will be slower compared to the change of the volume when increasing
the length scale. The larger the bird, the more difficult it is for it to take off. Large
raptors launch themselves from rocks to reach the initial velocity required. The non-
volant ostrich (50 − 100 kg) would need a start-up speed of several hundred kilometers
per hour in order to take off.

⊕Remark : Pteranodon (the biggest flying dinosaur) probably had a wingspan of about seven

meters, but only a mass of approximately 15 kg. It would never have been able – like in Jurassic
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Fig. 2.9. bee-eaters, wasp with prey at departure, a stowaway (1 mm)

Park III – to drag an object of human size through the air. A similar performance can only be

achieved by much smaller creatures, like the wasp on the right of Fig. 2.9, which has paralyzed

a spider and is transporting the spider in flight. ⊕ ◂◂◂

▸▸▸Application: cooling of the planet
After a huge explosion in space, two planets are produced whose diameter have a ratio
of 1 ∶ 2. Which planet will cool faster?
The volumes have a ratio of 1 ∶ 8; the surfaces have a ratio of only 1 ∶ 4. That is, the
larger planet has half as much surface area in proportion to its volume, and therefore,
cools down more slowly.

Fig. 2.10. odd cocktail “on the rocks” and ice transportation at 35○ in the shade

⊕Remark : Our Moon is probably 4.5 billion years old2 and is believed to have merged from 20
smaller “moonlets” that spalled off following an asteroid strike on the Earth. The fact that the
density of the Moon is less than that of the Earth may be taken as an indication supporting this
theory. The larger density of the Earth is mainly due to the nickel-iron core. The Moon, with a
diameter of only about a quarter of the Earth’s diameter, has, therefore, already cooled by the
above considerations, while the Earth is still liquid inside (the frozen continents float like a milk
skin on the surface of coffee). Due to their own gravity, all comets or moons with a diameter of
more than 500 km attain a spherical shape as long as they are liquid inside. For example, the
two quite small moons of Mars are not spherical.

What applies to cooling generally also applies to temperature compensation. Fig. 2.10 illustrates

how much the size of a frozen block influences its melting time. Towards the end of the austral

winter, the giant icebergs on the sea ice of the South Atlantic cover an area which is twice as

large as Canada. The enormous amounts of ice have to be thawed only once! ⊕ ◂◂◂

The fact that during enlargement or reduction, the ratio Volume ∶Surface changes, had
an enormous impact on the respective development of insects and warm-blooded animals:

2In National Geographic, issue September 2001, there is a clear explanation for the relatively precise dating of
the formation of the Earth.
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Fig. 2.11. an elongated and a “rotund” insect

▸▸▸Application: maximum size of insects (Fig. 2.11)
In general, insects are shorter than 10–15 cm (the heaviest, though not the largest, insect
is the up to 12 cm-long Goliath beetle, see Fig. 2.11, right). Their oxygen supply is the
so-called trachea, which is a system of tubes in their exoskeleton. The oxygen exchange
takes place via the surface of this system. For a length over 15 cm, this oxygenation is
no longer enough: There is a mismatch in the ratio volume (weight) : tracheal surface
which is getting too large. The ideal size of an insect is clearly in the range of 1 cm
or less. Smaller insects are much more resistant than bigger ones. This is also due to
the deteriorating ratio between body weight and muscle strength (compare Application
p. 14).

⊕Remark : As always, exceptions prove the rule: There is an up to 30 cm-long stick insect (Pa-

lophus titan) (Fig. 2.11, left), and the giant dragonflies in carbon rocks have a wing-span of up

to 75 cm! For an extremely elongated body shape, only a very short trachea is required, and such

a trachea may then have a relatively large diameter. ⊕ ◂◂◂

▸▸▸Application: optimal oxygen supply (Fig. 2.12)
In contrast to insects, the bodies of higher developed animals are supplied with oxygen
via their blood (Fig. 2.12). More blood allows more oxygen to be transported. The
amount of blood increases in proportion to the volume and there is no mismatch. The
oxygenation by blood thus limits the size of the living being but it is not the only factor
– there are other factors at play as well (see Application p. 14).

Fig. 2.12. veins and trachea Fig. 2.13. mammals

⊕Remark : The only problem is the accumulation of blood in the lungs: The surface of the lungs

has to increase disproportionately, which is made possible by a rapid increase in the number of

alveoli in large animals. Infants initially have fewer alveoli, and they disproportionately increase

their number until the age of eight, to be ready by “maturity”. ⊕ ◂◂◂
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▸▸▸Application: minimum size of warm-blooded animals (Fig. 2.13)
For animals with constant body temperature, there is now a clear lower limit for the
height, namely, about the size of a pygmy shrew (Fig. 2.13) in mammals and the bee
hummingbird (a hummingbird species with only 2.5 g of body weight) in birds. For both,
there is an extremely small ratio of weight (and thus warming amount of blood) to surface
area over which these animals constantly lose heat (energy). To make up for this loss,
the shrew has to eat constantly. Smaller shrews from earlier geological periods, therefore,
subsisted partially on nectar, extremely high-energy food. The same holds true for the
hummingbird. ◂◂◂

For similar reasons, one can explain why large animals in relation to their mass are much
weaker than smaller animals: The strength of a muscle is not dependent on its volume
but on the cross-section:

Fig. 2.14. an ant and an elephant at work

▸▸▸Application: relative body strength (Fig. 2.14, Fig. 2.15)
An ant can carry many times its weight. Although an elephant is objectively incompa-
rably stronger, it can only carry much smaller loads relative to its weight. In addition,
an elephant already needs very thick legs (due to a disproportional cross-sectional en-
largement of the muscles), in order to bear the enormous weight.

Fig. 2.15. Left: It took minutes to overtake the millipede – the short legs of the victim are strong
levers. Right: An ant tries to escape a meat-eating sticky plant (sundew, Drosera capensis).

⊕Remark : This is even true when comparing relative strengths of small and large articulate

animals: 5 mm long jump spiders can jump much further (in relation to their size) than the quite

tremendous (and 10,000 times heavier) tarantulas. ⊕
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Fig. 2.16. One cannot get much smaller. Left: Escaped after being trapped in a cat’s mouth!

Numerical example: Pygmy Shrew: 4.3−6.6 cm (without the tail) with 2.5−7.5 g, elephant: up to

3.5 m and 4,000 kg. If the elephant were as slim as the shrew, it would weigh less than 2,000 kg.

◂◂◂

If the ratio V2 ∶ V1 of the volumes is given, then the similarity factor is calculated by
taking the cube root:

k = 3
√
V2/V1. (2.2)

Then, one can again use the formulas (2.1).

▸▸▸Application: allometries in the animal kingdom
Biologists are understandably cautious when using the term “similarity” and instead
use the term “allometry” in this context, when certain organs are not in the same
proportion as most others. Nevertheless, a domestic cat (5 kg) and a leopard (50 kg)
are not too allometric in spite of their similar shape (Fig. 2.17). How do their shoulder
heights respectively relate to their coat surface or their tread surface (i.e. the surface of
their paw prints) ?

Fig. 2.17. similar cats

Solution:
Since their bodies have the same density, the ratio of the masses equals that of the
volumes.

k3 = 10⇒ k = 3
√

10 = 2.15, k2 ≈ 4.6.

The shoulder height has a ratio of 1 ∶ 2.15. The coat surfaces or the treading surfaces
have a ratio of 1 ∶ 4.6. ◂◂◂
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Fig. 2.18. similar white rhinos (low allometry)

▸▸▸Application: similarity between a pup and a dam
Relatively little allometry can be seen in the two rhinos in Fig. 2.18 and the tigers in
Fig. 2.19. In the middle image of Fig. 2.19, it can be seen only at second glance that a
“baby tiger” slurps water. The difference in size to the mother can only be estimated
from the image on the right. How can the masses of the young animals be guessed?

Fig. 2.19. similar Siberian tigers (low allometry)

Solution:
Fig. 2.18: Since the rhinos in both images are standing in parallel, length measurements
(for example, the length of the spine) can be compared quite well. The scaling factor is
about k ≈ 0.75. The mass of the baby animal is k3 of the mothers mass, so at a good 40%.
Since adult rhinos have a mass of 1,500 − 2,000 kg it is likely that the cub would weigh
around 600−650 kg. On the right, the shoulder height of the baby animal may be k = 0.4
of his mother’s shoulder height, resulting in a mass of about k3 = 0.43 = 0.064 ≈ 1/16,
which equals about 100 kg.
Fig. 2.19: Here, the length dimensions are not directly comparable. If the shoulder height
of the young tiger were 45% of the shoulder height, the masses would be in the ratio
0.453 ∶ 13 ≈ 1 ∶ 10. Siberian tigers are the largest living carnivores. Even the females have
a mass of 100 − 170 kg. So, young tigers must have a mass of about 15 kg.

⊕Remark : The ants in Fig. 2.20 are directly comparable. The larger guardian ant is about 1.5

times as long as the worker ant, and in absolute terms it is 1.52 = 2.25 times stronger. Relatively

speaking, it has a mass that is 1.53 ≈ 3.4 times as large as the mass of the worker ants. It is,

thus, weaker than the smaller ant. ⊕ ◂◂◂
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Fig. 2.20. two ants of the same species (worker, guardian)

▸▸▸Application: the gravitation on the surface of a celestial body
On Earth, we have a gravitational acceleration of 1 g. What is the acceleration on another
planet or on the Sun with k times the diameter and d times the density?

Solution:
The mass of the body increases with dk3. Gravitation decreases at the same time with
the square of the distance from the center (factor 1/k2). Altogether, the increase is, thus,
dk.
Since Mars, for instance, has a lower density than the Earth (d ≈ 0.7) and its diameter
is about half (k = 0.532), we can expect little less than 40% of the gravitational force on
its surface. On our Moon (d ≈ 0.8, k = 0.25), we have 20%. For both Jupiter (k = 10) and
the Sun (k = 100), we have d ≈ 1/4. Thus, we can expect 2.5 g or ≈ 25 g, respectively.

◂◂◂

▸▸▸Application: ostrich and chicken eggs compared (Fig. 2.21, left)
An ostrich’s egg looks like a large chicken egg, but has about 24-times the mass of a
chicken egg. What is the ratio of the diameters and what is the ratio of the surface areas?
Why do ostrich eggs need extreme heat for hatching?

Fig. 2.21. ostrich and chicken eggs in comparison

Solution:

M1 ∶M2 = 1 ∶ 24⇒ V1 ∶ V2 = 1 ∶ 24 (equal consistency)

⇒ d1 ∶ d2 = 1 ∶ 3
√

24 ≈ 1 ∶ 2.9⇒ S1 ∶ S2 = 1 ∶ ( 3
√

24)2 ≈ 1 ∶ 8.3.
The ratio of the surfaces: The volume of the chicken egg is much smaller than that of
the ostrich egg (using the factor k = 2.9, see Application p. 10). In order to heat the
entire interior of the egg, a long exposure to a higher outdoor temperature is required.
Therefore, ostriches live mainly in the hot semi-deserts of southern Africa.

⊕Remark : How long do you have to cook an egg? This question depends not only on whether

you want to have the egg soft-boiled or hard-boiled, but also on the size of the egg. Large eggs

take longer! ⊕ ◂◂◂
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▸▸▸Application: Why do big air bubbles ascend faster? (Fig. 2.22)
Every diver knows: Big air bubbles ascend faster than small ones (Fig. 2.22). The rule
of thumb is the following: Ascending faster than 20 m per minute should be avoided –
and this also applies somehow to small air bubbles.

Fig. 2.22. One major, but simplified, rule for divers: Do not ascend faster than the small bubbles
– no matter what happens.

Solution:
We first simplify the situation and assume that bubbles are spherical. Then, larger
bubbles paradoxically have – in relation to their volume – less surface and less cross-
section. Due to Archimedes’s principle (Application p. 5), the buoyancy force equals the
weight of the displaced water bubble, whereas the cross-section is mainly responsible
for the friction force. One could compare the situation with the free fall of small and
big spheres of the same material with extreme air-resistance: The big spheres, then, are
faster than the small ones.

Fig. 2.23. Ascending air bubbles change their shape all the time. The big bubbles roughly
develop the shape of spherical caps and resemble the shape of jellyfish.

When looking at photo series or videos of ascending water bubbles (Fig. 2.23), one notices
two things: Firstly, big bubbles look like spherical caps, and secondly they “explode”
and form new smaller spheres every once in a while as they ascend. This might have the
following explanation: Small bubbles have a spherical shape due to their surface tension.
Since they ascend at a lower speed, they are barely deformed. When the bubbles get
bigger due to decreasing pressure, the streaming dents the sphere on the back.

⊕Remark : Application p. 9 explains that air (80% Nitrogen) is dissolved under pressure into the

blood system of the diver. If the diver ascends too quickly, the air cannot be fully exhaled by the

lungs and nitrogen embolism can cause serious damage. ⊕ ◂◂◂
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▸▸▸Application: Do large aircraft need relatively less fuel?

Solution:
Assuming that both large and small commercial aircraft seem fairly similar, the question
is quickly answered: Yes, they need a relatively smaller amount of fuel. A plane that can
carry 320 passengers needs to be only twice as large as one that carries 40 people (40⋅23 =
320). Then, it has only four times the air resistance, and the per capita consumption is
half as much for the small model.

⊕Remark : Large commercial aircraft can fly even higher than small ones and they have a lower
air resistance. On the other hand, the ascent requires an enormous effort, which is why the
situation is clearly only suitable for long haul flights.

Numerical example: Lufthansa has indicated a fuel consumption of an average of 4.4 liters per

person on a 100 km route. The wide-bodied Airbus A380-800, however, consumes 3.4 liters. The

planned new Boeing 787 is supposed to get through with as little as 2.5 liters. ⊕ ◂◂◂

Fig. 2.24. length runs . . .

▸▸▸Application: in shipping: “length runs” (Fig. 2.24)

Solution:
One criterion for water resistance is the width of the hull, and it increases in similar
constructions only with the root of the submerged hull.
Another criterion is the area of the surface that is in contact with the water, and this
decreases proportionally with increasing body length L. Occasionally, one even finds the
formula for the maximum velocity vmax ≈ 2.5

√
L nautical miles/hour (= knot).

⊕Remark : In a downhill race, much longer skis are used than in the technical disciplines, again

because “length runs”. For the interview with the winner, the skis are replaced by shorter ones

so that the brand is clearly visible inside the frame of TV screens. ⊕ ◂◂◂

▸▸▸Application: transmission matters (Fig. 2.25)
Explain how the depicted electric screwdriver works and determine its angular velocity
if the electric motor makes 3,500 revolutions per minute.

Solution:
Let us consider the inside of the screwdriver. A 3.6 volt battery (Fig. 2.25, left) pro-
vides the necessary electricity to turn the small electric motor with a speed of about
3,500 revolutions per minute. The motor shaft propels a small gear with only six teeth
(Fig. 2.25, middle). This so-called sun gear transfers its rotational momentum to three
rotationally-symmetric positioned planetary gears. The planetary gears are positioned
so that they are connected to a fixed outer gear with 48 teeth. (Their number of teeth
– in this case 19 each – depends on the sizes of the sun gear and outer gear and has no
direct impact.) This causes the centers of the planetary gears to rotate with one eighth
(6 ∶ 48) of the drive shaft’s angular velocity.
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Fig. 2.25. left: electric screwdriver, middle: the small sun gear transfers its rotational momentum
to three planetary gears, right: the axes are fixed, and the outer gear is allowed to rotate.

The centers of the planetary gears form a fixed equilateral triangle. On its reverse, in a
second step, a further 6-tooth sun gear propels three other planetary gears with the same
transmission ratio as before. The connecting triangle between the planetary gears in the
second layer is finally connected to the axis of the screwdriver. The 8 ⋅ 8 = 64 revolutions
of the electric motor thus cause a single turning of the screw (roughly 3,500/64 = 55
revolutions per minute).

⊕Remark : This explains the large angular momentum M . Given the motors constant power P ,
we can apply the equation P =M ⋅ω, where ω is the angular velocity. Planetary gears have many
applications in technology, such as in gearboxes, cable winches, and bicycle hub gears.

Another variation on the same principle is also notable: If the axes of the planetary gears are

fixed and the outer gear is allowed to rotate, then it rotates significantly slower than the drive

shaft (Fig. 2.25, right). ⊕ ◂◂◂
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▸▸▸Application: How often does Greenland fit into Africa? (Fig. 3.1)
If you ask people to estimate estimate, the solutions offered to this question tend to be
of the order of “four to six times” or so. The correct answer, however, is 15 times! This
has to do with the fact that Africa is “around the equator” and Greenland is far North.
The rectangular maps of the Earth distort Greenland much more than Africa.

Fig. 3.1. The distortion in the rectangular map of the Earth makes area comparisons hard. In the
right image, another great circle takes over the role of the equator. Both Africa and Greenland
are close to the equator, and the size comparison is more realistic. Compare also Australia and
Antarctica in the left and the right rectangular map.

⊕Remark : Even on the “usual” rectangular map, one can see that Africa and South America

were once joined together. This, however, is only possible since both continents are close to the

equator. Australia and Antarctica used to be one continent as well, but this cannot be seen on

such extremely distorted maps. ⊕ ◂◂◂
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▸▸▸Application: rolling cone (Fig. 3.2)
When a cone of revolution is rolling on the base plane, it will stay inside a circle around
the apex. We now choose two parallel circles on the cone. Let the ratio of their radii
be 1 ∶ k, and d be their distance measured on the cone’s generating line. What is the
radius s of the inner blue circle in Fig. 3.2? Compare also Application p. 22.

r
kr

d
s

Fig. 3.2. The rolling of the cone can be substituted by the rolling of two rigidly connected
parallel circles of the cone.

Solution:
Due to the intercept theorem, we have s ∶ r = (d+ s) ∶ (kr), and thus, s = d/(k−1). ◂◂◂

▸▸▸Application: Why does a train not derail?
This application does not need calculations, but has something to do with arc lengths.
The answer “The train does not derail, because it runs on rails” is too simple.

Fig. 3.3. conical wheels

Solution:
The train would continually derail if pairs of co-axial wheels were not conical. Even the
steel ring on the inside of the wheel cannot prevent derailment. It is mainly the slightly
conical shape of the wheels (Fig. 3.3) that can do so: If the train drifts to the right, then
the contact circle on the right wheel apparently increases its diameter due to the conical
shape of the wheel. At the same time, the diameter of the contact circle on the left wheel
decreases (causing a tilt of the axis). This is exactly what forces the axis to move back
into the right and stable position.

⊕Remark : When the train has to take a curve, the conic wheels are also of great advantage.

Imagine the left curve in Fig. 3.4: The tracks have to be inclined, otherwise the centrifugal forces

would tip the train over. These centrifugal forces will still shift the train to the right. This causes

the circle of contact with the right track to increase, and the corresponding circle on the left to

decrease. This is good, because now the train automatically tilts to the left (Fig. 3.2). Inclining
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Fig. 3.4. No problem with taking the left curve: The smaller circle of contact on the left and
the larger to the right make the train stay on the tracks.

not enough to the right will push the train further right, whilst inclining too far to the right will

push it back to the left. The perfect equilibrium lies somewhere in between. ⊕ ◂◂◂

▸▸▸Application: Snell’s law (Fig. 3.5, Fig. 3.6)

λ

λ2

C1

C2

A
Bα1

α2

α2

velocity v1

velocity v2

Fig. 3.5. The wave front plausibly explains the law of refraction of light rays (the wave front
tilts upon hitting the layer of separation).

From Fig. 3.5, we obtain

BC1

AC2

= v1
v2

= n⇒ BC1

AB
= n ⋅ AC2

AB
⇒ sinα1 ∶ sinα2 = n.

According to the law of refraction (Snell’s law), the angle α of the incoming ray and
the angle β of the outgoing ray (measured to the normal of the surface) are related by
sinα ∶ sinβ = 4 ∶ 3 for the transition from air to water. There is, due to the atmosphere,
no total reflection. That is, all light rays are at least partially deflected into water.
Conversely, there is a critical angle β0 at which no light passes from the water through
the surface. The critical angle β0 is obtained from the maximum value of 1 from sinα:

1

sinβ
= 4

3
⇒ sinβ0 = 3

4
⇒ β0 ≈ 48.6○.

⊕Remark : A seal that floats on the blind spot (Fig. 3.6) cannot see the Inuit who is waiting for

it at the air hole in the ice: The only light rays that lead to the hunter are shielded by the ice.

Even the Inuit sees the seal only when its nostrils stretch out of the water (Fig. 3.7)! ⊕ ◂◂◂



24 Chapter 3: Math Lectures GG – More interesting things

air

water

ice layer ice layer

blind angle blind angle

α

β

β0

Fig. 3.6. total reflection Fig. 3.7. situation in the water . . .

Fig. 3.8. Who sees whom now?
This question is by no means trivial!

Fig. 3.9. total reflection outside of Γ∗ (on the left the
track circuit of Γ∗ is seen)

▸▸▸Application: Who sees whom?
In the calm pool of water (Fig. 3.8, left), the fish A (the diver) sees:

• “everything” outside the pool, albeit it is distorted greatly. The refracted image is
inside a circle k on the surface. This circle is the intersection of a cone Γ of revolution
with an aperture angle of 2 × 48.6○;

• the total reflections of those parts of the basin which are outside the reflected cone
Γ∗, e.g. the fish C (particularly clear in Fig. 3.9, left);

• reflections of the rest of the basin (Fish B) in the interior of k – as a result of partial
reflection (the calmer the surface of the water, the clearer the image);

• the fishes B and C, even directly!

On a photograph from outside the basin (for instance, from a diving board) you can see
all the fishes – to some extent severely distorted. ◂◂◂

▸▸▸Application: How does a rainbow form? (Fig. 3.11)
A good moment to see a rainbow is when the Sun is low after a downpour (Fig. 3.10).
Why? How does a rainbow form?

Solution:
The wavelengths of the spectrum of visible light range from 380 to 780 nanometers, i.e.
slightly less than one thousandths of a millimeter. The individual spectral colors are
less broken during the transition to an optically denser medium if their frequencies are
smaller. Therefore, violet is refracted more strongly than red. Beyond red, we have the
warming infrared rays. Beyond violet, we have the harmful ultraviolet rays.
Now, after a downpour, the air is full of (spherical) water droplets (Fig. 3.11). These,
we usually see in a diffused form as mist or cloud. Let r be the direction of the incoming
light rays. At any point of the illuminated hemisphere, a light ray is partially reflected at
the hemisphere, while the other part is partially refracted inside the hemisphere (→ ray
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Fig. 3.10. Two concentric rainbows (primary and secondary). Left: two real rainbows were
captured from a terrace with a fish-eye lens during a low sun position. These shimmering water
droplets are many kilometres away! Right: this photo was taken with a 30 mm wide angle lens.
No rainbow was present in the sky rather, a jet of water was shooting closely past the camera
in the shape of a parabolic trajectory, producing two clearly visible rainbows.

r1). The ray is “fanned” into the different spectral colors due to the different refractive
indices. The ray r1 meets the sphere from the inside and is partially refracted, partially
reflected (→ ray r2). The ray r2 again meets the spherical wall and is partially refracted
(→ ray r3), partly reflected where the fanning is partly undone, but is still maintained.
The outgoing ray r3 is a further fanned bundle of rays. The reflected residual light
“wanders further around”, whereby the light ray loses intensity by splitting into reflected
and refracted light.
It now seems that r3 is mainly responsible for the rainbow effect. To be more precise, it
is responsible for the primary rainbow . A further reflection and subsequent emergence
produces a secondary rainbow (Fig. 3.10). This was known by René Descartes (1596 −
1650) almost 400 years ago!

Fig. 3.11. emergence of the rainbow

If we send not just one but an infinite number of parallel rays of light into the sphere
(Fig. 3.11), most of the rays – being refracted in every direction – will leave the water
droplets at the back. Those rays that arrive at the backside of the droplet approximately
at the critical angle of total reflection will return relatively highly fanned towards r3.
Fig. 3.11 illustrates that, at a certain exit angle (α ≈ 43○), there is a distinct maximum
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of such rays r3.
1 For each partial spectrum in the entire spectral range – for each color

– this angle is slightly different (Violet . . . 42○, Red . . . 44○). Viewing the droplet at this
angle, an appropriate amount of color prevails.
Thus, all rain drops that “dispatch” rays r3 at the angle α are seen in the corresponding
spectral color. All these droplets are distributed on a cone of revolution whose apex is
the eye and its half aperture angle equals α. Thus, this cone of revolution appears in
a “projecting” manner, and therefore, it appears as an arc (Fig. 3.11). The human eye
is able to distinguish seven essentially different colors, with red on the margin. In the
secondary rainbow – it occurs for α ≈ 51○ – the order turns back because of the additional
reflection!

⊕Remark : Depending on the position of the Sun, one can see at most a semicircle. Looking out

of a plane (above the clouds), you can see a whole circle if the Sun is high. Since the cone is

dependent on the position of the observer, one always sees a new rainbow when walking. So, it

makes no sense “to look for the treasure that is buried at the foot of the rainbow”. ⊕ ◂◂◂

Fig. 3.12. red sunset with delay
of five minutes . . .

Fig. 3.13. The underlying theory shows: We can see
around the bend!

▸▸▸Application: Why does the setting Sun appear to be Red?

Solution:
If the Sun is low on the horizon, the light rays, which contain the entire visible spectrum
(see Application p. 24), transit the atmosphere at equal angles. The atmosphere becomes
denser as it gets closer to the Earth’s surface. The rays are, thereby, increasingly fanned
into the different colors, with violet being the most bent towards the front and red the
least. Theoretically, the portion of light that is blue reaches us for a longer period of
time than the red component (Fig. 3.12). However, due to its shorter wavelength, this
blue portion is scattered across the atmosphere (which is why the sky is blue). So, when
the Sun goes down under the horizon, you can see the color red for about five minutes
(Fig. 3.13)!

⊕Remark : Thus, for about five minutes, we have the impression that an object is located in the

extension of the light rays reaching the eye. Eventually, the red portion of light is no longer able

to make it “around the bend” and the Sun goes down, seemingly deformed to an oval. ⊕ ◂◂◂

1Start the demo program rainbow.exe to see the animated situation. For more theoretical details on this issue,
see the following interesting website:

https://plus.maths.org/content/rainbows

See also Steven Janke: Modules in Undergraduate Mathematics and its Applications, 1992.
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▸▸▸Application: Fata Morgana? (Fig. 3.14)
This particular sunset deserves a closer explanation. Both images to the left look relative-
ly familiar. From the third image onwards, however, something like a reflection appears
to emerge. This reflection is then increasingly distorted in the subsequent images, even
when the Sun has already disappeared completely.

Fig. 3.14. 3.5 exciting minutes

Solution:
A Fata Morgana is an optical illusion caused by the refraction of light in layers of air of
differing temperature and humidity. As previously mentioned (Application p. 26), the
Sun should already have disappeared from sight several minutes before the picture was
taken. Due to the low angle of incidence, the blue components of light with their short
wavelength were already fully absorbed by the atmosphere, while the red components still
managed to go around the bend. Yet, what causes the strange reflection? The specular
points are not infinitely far away, but are instead located on the surface of the water.
In fact, due to the curvature of the Earth, they can be much closer than one might
expect. Depending on one’s height above water level, it is possible to see anywhere from
several to 100 kilometres ahead, though the latter distance is only possible during clear
atmospheric conditions. The images on the right were taken a few seconds after the Sun
had disappeared completely. The fisherman at sea, however, would still have been able
to see it. The sunrays which hit the surface of the water at the fisherman’s position could
have been detected by us, although they might have been slightly refracted, owing to the
different atmospheric conditions of temperature and humidity. The series of photos was
taken on the Cape of Good Hope at the end of February. On the northern hemisphere,
at the same latitude, the Sun sets clockwise in the direction west-north-west. On the
same day on the southern hemisphere, the Sun sets in anti-clockwise direction towards
the west-south-west. Note the encircled tree which appears to move one Sun diameter
to the right within a span of 3.5 minutes. ◂◂◂
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▸▸▸Application: the common center of gravity of the Earth and the Moon
(Fig. 3.16)

With M1 = 81M2, we have s⃗ = 1
82(81s⃗1+ s⃗2). Because d ≈ 384,000 km, the common center

of gravity, thus, lies at a distance d
82 ≈ 4,700 km from the center of the Earth, that is still

within the Earth (Earths radius, r ≈ 6,370 km). The Earth and the Moon rotate around
this common center of gravity, that is, the Earth “wobbles”.

Fig. 3.15. multiple blocks
Fig. 3.16. common center of gravity of the Earth and the
Moon, two tidal bulges

⊕Remark : Analogously, the Sun “wobbles” around the common center of our planetary system.
We now know that there are other suns (=“stars”) which also “wobble”.

With the fact that the double planet Earth-Moon rotates around the common center of gravity S,

one can also explain why there are high tides and low tides twice a day (Fig. 3.16): The first tidal

bulge is at the point F1 that is closest to the Moon. This point on Earth is affected the most by

lunar attraction, while it is only minimally affected by the centrifugal force during the rotation

around S. The second tidal bulge occurs at the exact opposite point F2 – we get the maximum

centrifugal force due to the rotation around S because it is so far away from this and more than

6 times as far as the Moons next point. The two tide mountains move due to the rotation of the

Earth over the course of almost 25 hours (the Earth has to “overturn” in order to “catch” the

next migrated moon. ⊕ ◂◂◂

Multiple reflections

▸▸▸Application: specular corners (Fig. 3.17, Fig. 3.19)
If you look into a mirror, you see yourself “reversed”. In a two-way mirror with an acute
angle α (Fig. 3.17: α = 60○), you can see how others see you. What happens if α = 90○

or α > 90○.

Fig. 3.17. double reflection Fig. 3.18. α = 90○, billiards

Solution:
If α = 90○, then the doubly-reflected ray is “exactly parallel to the incident ray” (Fig.
3.18). This has the consequence that one eye sees the other, and, vice versa. The same
applies to the two halves of the face. The distance from the mirror does not matter.
When looking at the edge of a rectangular double mirror, one sees – separated by the
edge – both sides of the face, and they do not appear mirror-inverted.
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At obtuse angles α > 90○ and with increasing distance, you will not see yourself when
looking into the mirror’s corner.

⊕Remark : The above example with α = 90○ and P ≠ Q can be interpreted in terms of billiards

(rail shot). ⊕ ◂◂◂

Fig. 3.19. Confusion results from using three mirror planes, each constituting approximately
60○. Since the angles are not accurate, some artefacts come into being.

▸▸▸Application: reflecting “cuboid corner” (Fig. 3.21)
The special case α = 90○ has an important practical application: Consider a reflecting
“cuboid corner”, which consists of three concurrent faces of a cube (Fig. 3.21). Prove that
if one shoots a laser ray into this corner, the ray is redirected parallel to the incoming
ray.

Fig. 3.20. cuboid corner in ship-
ping

Fig. 3.21. reflecting cuboid corner

Proof : We look at the situation from above to get a top view: There, the reflections in the
vertical planes appear as planar reflections in the respective normals. However, the reflection in
the horizontal plane is not seen in the top view because the normal “projects” to the base plane.
Thus, following the above (Fig. 3.18) considerations in two-dimensions, the incoming ray appears
in the top view parallel to the outgoing ray. The same holds for the views from the front and
right (front view, right-side view). So, the outgoing ray is parallel to the incoming ray in space.
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Another proof is derived from the fact that, with each reflection in a coordinate plane, the sign

of the corresponding component of the direction vector switches. Since all coordinate planes are

affected, the vector is just reoriented.⊙
⊕Remark : This property of the specular cuboid corner allows us to measure distances. Reflecting

prisms are, for example, mounted on the Moon to carry out certain experiments (verification of

light speed and distance measuring). Such devices are also mounted on bridges to allow ships to

determine their distance from the bridge’s pillars. ⊕

Fig. 3.22. Reflectors for bicycles consist of many small corners!

⊕Remark : Fig. 3.22 shows how reflecting cuboid corners are applied in daily life: The reflectors

which are mounted on bicycles – viewed under a microscope – consist of nothing but small cuboid

corners. When they are illuminated by a car, they accurately reflect back to the car driver. Along

with the rotation, the reflectors produce an extremely effective and bright warning. ⊕ ◂◂◂
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▸▸▸Application: multiple reflections in two orthogonal mirrors
With multiple reflections in two perpendicular planes, a remarkable effect occurs, whe-
reby left and right – and not, as in the ordinary mirror, the front and the rear – are
interchanged. What exactly is happening here?

Solution:
For the sake of simplicity (Fig. 3.23), the two planes ξ and η are assumed to be vertical
coordinate planes with the equations x = 0 and y = 0. Each of the planes initially
generates a virtual – usually reversed – counterpart Ωx (change of signs in the x-values)
or Ωy (change of sign in the y-values). The two objects are indirectly congruent and –
from the standpoint of perception – are of equal rank as the original Ω.

Ω

Ωx

Ωy

Ωyx Ωxy

Fig. 3.23. Several mirrors in two mutually per-
pendicular planes of symmetry

Consequently, Ωx has a virtual counter-
part Ωxy through reflection in η, and Ωy

has a virtual counterpart Ωyx through re-
flection in ξ. However, because of the spe-
cial position of the mirror planes (ξ ⊥ η),
the two new objects are identical: Ω∗ =
Ωxy = Ωyx. Furthermore, they can only be
partly seen in the respective “mirror win-
dow”. The part labeled with Ωyx is produ-
ced through reflection in the right mirror
window of the visible virtual object Ωy in
the left mirror window.

The two mirror windows are touching each other along the edge s = ξ∪η (according to our
choice, the z-axis), so they merge into a single window, which consists of two mutually
perpendicular rectangles. This allows us to view our object Ω∗. It was created by double-
reflection and is, therefore, directly congruent to Ω. The two directly congruent objects
Ω and Ω∗ can be transformed into each other by a half-turn about the intersection s of
the mirror planes or by an axial reflection in s. Thereby, left and right are interchanged
firstly, and the characters are still readable as usual.
In the photo in Fig. 3.23, a wide-angle lens was used in order to make the “auxiliary
objects” Ωx and Ωy entirely visible.
In practice (also in human vision), the visual angle is smaller, and then, one only sees
Ω∗ in the image – comparable to an ordinary mirror image, but left and right are inter-
changed. ◂◂◂
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▸▸▸Application: What exactly happens between two parallel mirrors?
Consider the confusion with two parallel mirrors in Fig. 3.24: The photographer was
obviously able to focus through different distance settings on any of the available originals
or reflections. Visually, one is unable to distinguish between original and virtual objects,
so that it is not even guaranteed that the person depicted is actually seen as such – this
depends on the focal length that is actually used. That is to say, it depends essentially
on the aperture of the viewing cone.

Fig. 3.24. Three similar scenes, but in each another reflection is in focus. Can you see where
“the original” is?

Solution:
Let A be the position of the observer (Fig. 3.25) standing between two mirrors σ1 and σ2
(distance d apart). The camera, which is directed towards the axis a, can only capture
those things that are within the cone of vision ∆.

A

P0

P1

P3

σ1

σ2

a

d
u
u

2v

v

v

∆

P2

Fig. 3.25. For each virtual
point a new one arises at the
“speed of light”.

Now, assume that another person is standing (symbolized
by a point P0) between the mirrors, at a distance u from
σ1 and at a distance v from σ2: u+ v = d. Thus, two virtual
mirror images P1 and P2 arise at the distances u and v
behind σ1 and behind σ2. The two points are a distance
2u + 2v = 2d apart. P2 is visually indistinguishable from
a real point and is reflected in σ1 to a point P3. This is
at distance 2d from P0. If one continues, one obtains two
congruent series of points P0, P3, . . . and P1, P5, . . . whose
points are separated by a constant distance of 2d.

In Fig. 3.24, these series are clearly visible (in one of them, the person can be seen from
the front, in another from behind). In both Fig. 3.24 and Fig. 3.25, the observer and
the multiple reflections are not contained in the cone of vision. It is noteworthy that
the autofocus of the camera has no problem focusing on any reflection, which again
demonstrates that a purely optical mirror image is indistinguishable from reality. The
distance to which the autofocus adjusts equals exactly that of the “reflected” person in
the room – and not the distance to the mirror. The repeated reflection causes a loss of
brightness, so that further apart reflections appear weaker (darker). ◂◂◂
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▸▸▸Application: Why does an airplane fly? (Fig. 3.26)

Fig. 3.26. A non-trivial explanation of how lifting forces make an aircraft fly.

Solution:
The airfoil (usually almost symmetrical in the case of faster aircraft and curved upward
in the case of slower ones) has a sharp edge in its rear. When “pitching” upwind, there
arises a counter-clockwise velocity that is strongly dependent on the speed v. (Aircraft
with symmetrical profiles have extendible flaps which enhance the formation of vortices
used for slow flight phases.)

Fig. 3.27. wing motions of a butterfly (average frequency)

According to the law of conservation of angular momentum, a vortex arises, rotating
clockwise around the profile (speed ∣∆v∣). If the angle of approach is too large, the flow
breaks off and the aircraft descends uncontrollably. At the opposite vortex, there are

velocity vectors
Ð→
∆v (by definition directed and oriented) assigned to each point. The

sum vector Ð→v +Ð→∆v is, therefore, greater at the top than at the bottom.
Due to the aerodynamic paradox , negative pressure acts on the side where the air flows
at greater speed, and this will generate a buoyant force that causes the aircraft to stay
in the air.

Fig. 3.28. fin motions at relatively low frequencies

⊕Remark : A simplified explanation that is occasionally found reads as follows: The path of the

air at the top is longer than the path at the bottom, so that the air at the top must flow at a

greater velocity. This explanation is too simple.
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Flying animals – like butterflies – produce the necessary vortex by synchronously twisting their

wings (Fig. 3.27). At a very high wing-beat frequency, air behaves like a denser medium, and

flying insects can – similar to how water animals work with water resistance (Fig. 3.28) – repel

compressed air to create cushions. Aircrafts glide at high speed on air cushions. ⊕ ◂◂◂

▸▸▸Application: Why does a shark not sink? (Fig. 3.29)
The following question seems to be related to that of Application p. 33: Why does an
airplane fly? Surprisingly, the answer is very similar.

Fig. 3.29. An oceanic shark bears a striking resemblance to an aircraft. The pectoral fins work
like the wings of an aircraft.

Solution:
Big sharks like the oceanic whitetip shark (Carcharhinus longimanus) have a density
greater than water. So, if the shark stops swimming, it will sink. As it swings, the stiff
pectoral fins, which are slanted upwards, generate lift like an aircraft wing. Since the
pectoral fins are positioned before the animals center of mass, the generation of lift
results in a torque that tilts the sharks head upward.
To repeat it again (this time adapted to the fluid water): The sharp edges of the pectoral
fins create vortices that, according to the law of conservation of angular momentum,
generate counter-rotating vortices around the profile (speed ∣∆v∣). The vector sum Ð→v +Ð→
∆v, therefore, has greater magnitude at the top than at the bottom.
Because of the hydrodynamic paradox , negative pressure is generated on the side where
the water flows at greater speed, which will, in turn, produce a buoyant force that causes
the shark to ascend.
The sharks asymmetrical dorsal fin, however, simultaneously produces a torque that tilts
the head downwards. Both torques compensate each other, and thus, it is possible for
the shark to swim straight ahead without sinking. ◂◂◂

▸▸▸Application: positive or negative buoyancy (Fig. 3.31)
A hull sinks into water, and depending on the weight of the ship, it will go down to a
certain level. How far does it sink? Which forces occur, and when are they balanced?
What will happen if the body topples over?

Solution:
We simplify the reasoning by only looking at a typical cross-section of a ship. The
implementation of the following calculations, of course, is left to a computer.
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Fig. 3.30. center of gravity of a
quadrangle

Fig. 3.31. positive or negative buoyancy

• One can now consider the weight force acting at the center of gravity (Fig. 3.31, left).
For the computation, we triangulate the cross-section, and the weight is proportional
to the total area.

• According to Archimedes, the buoyancy is equal to the weight of the displaced fluid.
The force of gravity acts on the center of gravity of the displaced water (Fig. 3.31,
right). We intersect the partial triangles of the cross-section with the surface of the
water. If a triangle is completely outside the water, it does not count. If it is com-
pletely under the water, the area and centroid remain unchanged. For a triangle that
intersects the surface of the water such that the part under the water is again a tri-
angle, one can immediately calculate the area and the centroid. Otherwise, the part
underwater is a quadrangle, which can be decomposed into two triangles.

• When the buoyant force is greater than the weight force, the ship is lifted. If the
centers of gravity are not lying precisely above each other, they induce a torque. The
cross-sections of vessels are designed so that the ship is automatically lifted “upright”.

◂◂◂



36 Chapter 3: Math Lectures GG – More interesting things

Fig. 3.32. positioning Fig. 3.33. GPS for planes, ships, and cars

▸▸▸Application: Global Positioning System – GPS (Fig. 3.33)
The GPS has brought a revolution in the determination of locations. By means of handy
devices, one can know his/her exact position at any time with an accuracy of up to a
few meters (!). This is made possible by the fact that a relatively small number (24)
of strategically distributed satellites constantly transmits signals containing their cur-
rent position and the corresponding exact time. How can the device determine its own
position?

Solution:
In principle, the GPS operates as follows: The current positions A1, B1, and C1 of (at
least) three satellites are obtained by radio. For a first calculation, a position Q close to
the actual position P is chosen (e.g., the last calculated position).
This yields the distances a1 = A1Q, b1 = B1Q, and c1 = C1Q. Now, we intersect these three
spheres centered at A1, B1, and C1 and obtain a solution. However, the new positions
A2, B2, and C2 of the quickly moving satellites are assumed and the old distances are
calculated as a result. This results in a “mixed position” Q12. This, of course, does not
agree with Q or P for P ≠ Q. The distance d = QQ12 is a measure of the error: the
smaller d, the closer the actual position P to Q.
Now, we do the following: We repeatedly carry out the above-described “calculation
using a sample” by systematically varying the coordinates of Q(qx/qy/qz) and observing
the direction in which the distance d decreases: Then, for example, the values of d
are obtained only by varying the x-value. Next, we can find a better qx-value through
relatively coarse interpolation. Now, we change the qy-value and then the qz-value to
get the result. In the meantime, we will have to include new satellite positions into the
calculation in order to account for possible changes in position.

⊕Remark : Optimizing the step-by-step (iterative) search for the solution is a very challenging

task, but we will not discuss this here. ⊕ ◂◂◂


